3 resultados para Confocal Laser Scanning Microscopy
em University of Washington
Resumo:
In 2014 the United States Forest Service closed the Gold Basin Campground of western Washington in an effort to protect the public from unstable hillslopes directly adjacent to the campground. The Gold Basin Landslide Complex (GBLC) is actively eroding via block fall, dry ravel, and debris flows, which contribute sediment into the South Fork of the Stillaguamish River. This sediment diminishes the salmonid population within the South Fork of the Stillaguamish River by reducing habitable spawning grounds, which is a big concern to the Stillaguamish Tribe of Indians. In this investigation, I quantified patterns of degradation and total volume of sediment erosion from the middle lobe of the GBLC over the period of July 2015 through January 2016 using terrestrial (ground-based) LiDAR (TLS). I characterized site specific stratigraphy and geomorphic processes, and laid the groundwork for future, long-term monitoring of this site. Results of this investigation determined that ~ 4,800m3 of sediment was eroded from the middle lobe of the GBLC during the 6 month study period (July 2015 – January 2016). This erosion likely occurred from debris flows, raveling of poorly sorted sand and gravel deposits and block failures of high plasticity silts and clays, and/or other mass wasting mechanisms. The generalized stratigraphic sequence in the GBLC consists of alternating massive beds of sand and gravel with silts and clays. The low permeability of these silts and clays provide a perfect venue for groundwater to percolate, as I observed during field investigations, which likely contributes to the active instability of the hillslopes. Continued monitoring and mapping of this complex will lead to viable information that could help both the United States Forest Service and the Stillaguamish Tribe.
Resumo:
Structure from Motion (SfM) is a new form of photogrammetry that automates the rendering of georeferenced 3D models of objects using digital photographs and independently surveyed Ground Control Points (GCPs). This project seeks to quantify the error found in Digital Elevation Models (DEMs) produced using SfM. I modeled a rockslide found at the Cadman Quarry (Monroe, Washington) because the surface is vegetation-free, which is ideal for SfM and Terrestrial LiDAR Scanner (TLS) surveys. By using SfM, TLS, and GPS positioning at the same time, I attempted to find the deviation in the SfM model from the TLS model and GPS points. Using the deviation, I found the Root-Mean-Square Error (RMSE) between the SfM DEM and GPS positions. The RMSE of the SfM model when compared to surveyed GPS points is 17cm. I propagated the uncertainty of the GPS points with the RMSE of the SfM model to find the uncertainty of the SfM model compared to the NAD 1984 datum. The uncertainty of the SfM model compared to the NAD 1984 is 27cm. This study did not produce a model from the TLS that had sufficient resolution on horizontal surfaces to compare to surveyed GPS points.
Resumo:
The southwest-facing coastal bluff present at Discovery Park, Seattle, Washington, displays distinctive joints throughout the exposed Lawton Clay Member. Exhibiting a characteristic local stratigraphy of permeable advance outwash over the impermeable proglacial lacustrine clay, this bluff is located in an area of Seattle at high risk from landslides. This project addressed the relationship between the joints observed at this coastal bluff and the coherency of the bluff as a whole, through remote sensing and field measurements. Aerial drone photography taken of the bluff was processed through a photogrammetry software to produce a 3-dimensional Structure from Motion model, allowing for a digital manipulation and broad examination of the bluff not possible by foot. Stereonet plots produced from these measurements provided insight into patterns of varying joint strike along a horizontal transect of the observed bluff face. Taken together, these two visualizations provided a better picture of the possible chicken-and-egg interaction of the joints and bluff topography; they demonstrated the likelihood that the joint formation at the bluff was most likely to be primarily influenced by the local topography of the bluff over other sources of possible tensional stress in the immediate area.