3 resultados para CLEANUP

em University of Washington


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report provides the findings and opinions of a historical document review, hydraulic balance calculation, and proposed additional study for a property that was historically used as a bulk petroleum storage and distribution facility. The property lies along the base, west, of a heavily vegetated bluff with a tidally influenced body of water west-adjacent to the property. The western portion of the property is bounded by a seawall spanning approximately 3,200 linear feet trending north-south. The seawall’s construction details are not known, save for a 225-foot section of driven sheet pile wall located within the northern portion of the property’s seawall. Due to the presence of petroleum hydrocarbons in soil and groundwater at the property, a cleanup action for the property will likely be overseen by the state regulatory agency. The property is currently undergoing remedial investigation in an effort to identify the lateral and vertical extent in which contaminants at the property have come to be located, also known as the “site” as defined by the Model Toxics Control Act (MTCA). The majority of the property bounded within the seawall area has been characterized; however, the shoreline sediments located immediately west-adjacent of the seawall have not been properly delineated. Identifying the bounds of the site to the west within sediment is pivotal for the purposes of the remedial investigation. Since the west-adjacent shoreline is so extensive, conducting a complete sediment sampling event along the entire shoreline would be cost-prohibitive due to analytical costs and logistical issues at the property. Because of the extensive nature of the shoreline, it would greatly benefit the client and project to focus sampling efforts at areas of greater risk for contaminants along the shoreline by identifying potential preferential pathways for contaminants to migrate off of the property and into adjacent shoreline sediments. The review of historical studies of the property yielded some useful information; however much of the findings included within the historical studies were lacking original raw data, therefore limiting the information obtained. The calculated hydraulic balance for the property yielded a relatively large surplus of recharge to groundwater after precipitation events, reinforcing the concept that contaminant have potentially historically, and currently, been migrating into the adjacent shoreline through preferential pathways along the seawall. Due to the limitation within the historical studies for the property as well as the groundwater recharge identified in the hydraulic balance, an additional study was proposed in an effort to provide additional aquifer characteristics along the seawall, and the ability to observe flow propagation at and proximate to the seawall in two-dimensions through time without the need to piece separate studies together. This proposed study includes a single simultaneous tidal study which comprises select monitoring points along the seawall. This report has identified the need for additional data that can be collected through available avenues for the property based upon the client’s desires and project needs. Ultimately, the proposed additional study is suggested based upon its relatively low capital investment, and ability meet the requirements relevant to the specific project needs and scope. Assuming preferential pathways are identified through the additional study proposed within this report, a representative and cost-effective sediment sampling plan can then be put in place in an effort to define the site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From October 2014 to March 2015, I provided excavation oversight services at a property with substantial environmental concerns. The property in question is located near downtown Seattle and was formerly occupied by the Washington’s first coal gasification plant. The plant operated from 1888 to 1908 and produced coal gas for municipal use. A coal tar like substance with a characteristically high benzene concentration was a byproduct of the coal gasification process and heavily contaminated at or below the surface grade of the plant as shown in previous investigations on the property. Once the plant ceased operation in 1908 the property was left vacant until 1955 when the site was filled in and a service station was built on the property. The main goal of the excavation was not to achieve cleanup on the property, but to properly remove what contaminated soil was encountered during the redevelopment excavation. Areas of concern were identified prior to the commencement of the excavation and an estimation of the extent of contamination on the property was developed. “Hot spots” of contaminated soil associated with the fill placed after 1955 were identified as areas of concern. However, the primary contaminant plume below the property was likely sourced from the coal gasification plant, which operated at an approximate elevation of 20 feet. We planned to constrain the extents of the soil contamination below the property as the redevelopment excavation progressed. As the redevelopment excavation was advanced down to an elevation of approximately 20 feet, soil samples were collected to bound the extents of contamination in the upper portion of the site. The hot spots, known pockets of carcinogenic polycyclic aromatic hydrocarbons (cPAH) located above 20 feet elevation, were excavated as part of the redevelopment excavation. Once a hot spot was excavated, soil samples were collected from the north, south, east, west and bottom sidewalls of the hot spot excavation to check for remaining cPAH. Additionally, four underground storage tanks (USTs) associated with the service station were discovered and subsequently removed. Soil samples were also collected from the resulting UST excavation sidewalls to check for remaining petroleum hydrocarbons. Once the excavation reached its final excavation depth of 20 to 16 feet in elevation, bottom of excavation samples were collected on a 35 foot by 35 foot grid to test for concentrations of contaminants remaining onsite. Once the redevelopment excavation was complete, soils observed from borings drilled for either structural elements, geotechnical wells, or environmental wells were checked for any evidence of contamination using field screening techniques. Evidence of contamination was used to identify areas below the final excavation grade which had been impacted by the operation of the coal gasification plant. Samples collected from the excavation extents of hot spots and USTs show that it was unlikely that any contamination traveled from the post-1955 grade down to the pre-1955 grade. Additionally, the lack of benzene in the bottom of excavation samples suggests that a release from the coal gasification plant occurred below the redevelopment excavation final elevations of 20 to 16 feet. Qualitative data collected from borings for shoring elements and wells indicated that the spatial extent of the subsurface contaminant plume was different than initially estimated. Observations of spoils show that soil contamination extends further to the southwest and not as far to the east and north than originally estimated. Redefining the extent of the soil contamination beneath the property will allow further subsurface investigations to focus on collecting quantitative data in areas that still represent data gaps on the property, and passing over areas that have shown little signs of contamination. This information will help with the formation of a remediation plan should the need to clean up the site arise in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project investigates the correlation between contaminants and the wood waste present in marine sediments off the shore of the Port of Everett in the former Weyerhaeuser Mill-A pulp mill site. The investigation includes the results of two field studies, which tested contaminant levels in 22 boreholes as well as several surface samples. The contaminants include heavy metals and wood waste byproducts. These results, along with 14 other bore logs, provide the framework for a three-dimensional site model, interpolating the full extent of the depositional units and organic and inorganic chemicals found at Mill-A. The sediments of interest are divided into five depositional units defined by the percent wood content and type of wood: native material (<5% wood), intermediate (<30% wood), sawdust (<30% wood), woodchips (<30% wood), and poorly sorted sands with silt (SM-SP) (0% wood). The contaminants include arsenic, 2,4-dimethylphenol, and total organic carbon. Three-dimensional modeling software, RockWorks, interpolated the discrete borehole data of sediment and contaminants assuming horizontal continuity between sampling locations. The sediment distribution was calculated within concentration ranges for each contaminant of concern. The lowest detection limits, the screening levels, and the cleanup levels defined these ranges. Total organic carbon served as a proxy to estimate the quantity of wood waste in the sediment. As a known byproduct of wood decomposition, 2,4-dimethylphenol was expected to be more prevalent in the depositional units with more wood waste. Finally, arsenic was a proxy for other contaminants to determine if contaminants at Mill-A are dominant in sediments with high percentages of wood waste. The volumetric distribution established that high levels of total organic carbon are present in the sediment with higher percentages of wood waste. This correlation was stronger in the decomposing sawdust-rich sediment than the woodchip-rich sediment. The 2,4-dimethylphenol concentrations above cleanup standards were dominant in the sawdust-rich, intermediate and native sediments. Concentrations of 2,4-dimethylphenol below cleanup levels characterized the native sediment. The distribution of arsenic showed no statistically significant correlation to wood content in sediment. These results do not support the hypothesis of contaminant-rich wood waste, as many of the high concentrations of contaminants were not in the wood-rich sediments. This suggests that the contaminants are more distributed among all depositional units at Mill-A rather than focused within sediments with a high percent of wood waste. Understanding the distribution of potentially toxic compounds with wood waste is important for restoring the Puget Sound waterways to a more habitable environment. Future studies should include new data to validate these results and to limit the uncertainty of the extent of contaminants. Future studies may also find motive in looking for a correlation between contaminants and grain size based on previous studies linking these characteristics. These investigations will benefit the current cleanup effort as well as future cleanup efforts at similarly contaminated waterways.