2 resultados para Boring.

em University of Washington


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents the results of stratigraphic analysis of the southwestern quadrant of the Cedar Hills Regional Landfill (CHRLF). My report was intended to incorporate the recent Area 8 borehole data into the pre-existing analyses. This analysis was conducted during the preparation of the Area 8 Hydrogeologic Report, but is my independent investigation and does not represent the opinion of UEC or their associates. The CHRLF, in Maple Valley, WA, south of Squak Mountain, is a municipal solid waste landfill that has been in operation since the 1960s. A network of borings, the product of previous investigations, exists for the study area. I utilized the compiled boring logs, previous investigations, and the recently acquired data to produce a series of interpretative cross-sections for the study area. I recognized 9 distinct stratigraphic units, including fill. My interpreted stratigraphic units are similar to those identified in previous investigations such as the Area 7 Hydrogeologic investigation (HDR Engineering and Associates, 2008). These units include pre-Olympia aged non-glacial alluvium, glacial alluvium, and glacial till. Additionally, younger, Vashon-aged deposits of glacial till, recessional outwash, recessional lacustrine, and ice-contact were observed. An isolated “till-like” deposit was observed below the Vashon till. This could possibly represent an older till as mapped by Sweet Edwards (1985) and Booth (1995). I cite the continuity of the lower contact of the Vashon till (Unit 5, Table 2) and the upper contact pre-Vashon non-glacial fluvial deposits (Unit 9, Table 2) as evidence that faults or other structural features do not offset the deposits in the study area. This conclusion supports the findings of the pre-existing body of work within the landfill property and the nearby Queen City Farms property.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is aimed at determining the spatial distribution, physical properties, and groundwater conditions of the Vashon advance outwash (Qva) in the Mountlake Terrace, WA area. The Qva is correlative with the Esperance Sand, as defined at its type section; however, local variations in the Qva are not well-characterized (Mullineaux, 1965). While the Qva is a dense glacial unit with low compressibility and high frictional shear strength (Gurtowski and Boirum, 1989), the strength of this unit can be reduced when it becomes saturated (Tubbs, 1974). This can lead to caving or flowing in excavations, and on a larger scale, can lead to slope failures and mass-wasting when intersected by steep slopes. By studying the Qva, we can better predict how it will behave under certain conditions, which will be beneficial to geologists, hydrogeologists, engineers, and environmental scientists during site assessments and early phases of project planning. In this study, I use data from 27 geotechnical borings from previous field investigations and C-Tech Corporation’s EnterVol software to create three-dimensional models of the subsurface geology in the study area. These models made it possible to visualize the spatial distribution of the Qva in relation to other geologic units. I also conducted a comparative study between data from the borings and generalized published data on the spatial distribution, relative density, soil classification, grain-size distribution, moisture content, groundwater conditions, and aquifer properties of the Qva. I found that the elevation of the top of the Qva ranges from 247 to 477 ft. I found that the Qva is thickest where the modern topography is high, and is thinnest where the topography is low. The thickness of the Qva ranges from absent to 242 ft. Along the northern, east-west trending transect, the Qva thins to the east as it rises above a ridge composed of Pre- Vashon glacial deposits. Along the southern, east-west trending transect, the Qva pinches out against a ridge composed of pre-Vashon interglacial deposits. Two plausible explanations for this ridge are paleotopography and active faulting associated with the Southern Whidbey Fault Zone. Further investigations should be done using geophysical methods and the modeling methods described in this study to determine the nature of this ridge. The relative density of the Qva in the study area ranges from loose to very dense, with the loose end of the spectrum probably relating to heave in saturated sands. I found subtle correlations between density and depth. Volumetric analysis of the soil groups listed in the boring logs indicate that the Qva in the study area is composed of approximately 9.5% gravel, 89.3% sand, and 1.2% silt and clay. The natural moisture content ranges from 3.0 to 35.4% in select samples from the Qva. The moisture content appears to increase with depth and fines content. The water table in the study area ranges in elevation from 231.9 to 458 ft, based on observations and measurements recorded in the boring logs. The results from rising-head and falling-head slug tests done at a single well in the study area indicate that the geometric mean of hydraulic conductivity is 15.93 ft/d (5.62 x 10-03 cm/s), the storativity is 3.28x10-03, and the estimated transmissivity is 738.58 ft2/d in the vicinity of this observation well. At this location, there was 1.73 ft of seasonal variation in groundwater elevation between August 2014 and March 2015.