12 resultados para zebrafish
em University of Queensland eSpace - Australia
Resumo:
In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The cadherin superfamily members play an important role in mediating cell-cell contact and adhesion (Takeichi, M., 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451-1455). A distinct subfamily, neither belonging to the classical or protocadherins includes Fat, the largest member of the cadherin super-family. Fat was originally identified in Drosophila. Subsequently, orthologues of Fat have been described in man (Dunne, J., Hanby, A. M., Poulsom, R., Jones, T. A., Sheer, D., Chin, W. G., Da, S. M., Zhao, Q., Beverley, P. C., Owen, M. J., 1995. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 30, 207-223), rat (Ponassi, M., Jacques, T. S., Ciani, L., ffrench, C. C., 1999. Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mech. Dev. 80, 207-212) and mouse (Cox, B., Hadjantonakis, A. K., Collins, J. E., Magee, A. I., 2000. Cloning and expression throughout mouse development of mfat 1, a homologue of the Drosophila tumour suppressor gene fat [In Process Citation]. Dev. Dyn. 217, 233-240). In Drosophila, Fat has been shown to play an important role in both planar cell polarity and cell boundary formation during development. In this study we describe the characterization of zebrafish Fat, the first non-mammalian, vertebrate Fat homologue to be identified. The Fat protein has 64% amino acid identity and 80% similarity to human FAT and an identical domain structure to other vertebrate Fat proteins. During embryogenesis fat mRNA is expressed in the developing brain, specialised epithelial surfaces the notochord, ears, eyes and digestive tract, a pattern similar but distinct to that found in mammals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.
Resumo:
Gene knockout studies of Kruppel-like factors (KLFs) in mice have shown essential roles in organogenesis. A screen for KLF family members in zebrafish identified many KLFs. One of these, zebrafish KLF4 (zKLF4) is the homologue of neptune, a Xenopus laevis KLF. zKLF4 is expressed from approximately 80% epiboly a patch of dorsal/anterior mesendodermal cells called the pre-polster and, subsequently, in the polster and hatching gland. Here we investigate the function of zKLF4 using morpholino-based antisense oligonucleotides. Knockdown of zKLF4 resulted in complete absence of hatching gland formation and subsequent hatching in zebrafish. In addition, there was early knockdown of expression of the pre-polster/anterior mesendoderm markers CatL, cap1, and BMP4. These results indicate zKLF4 is expressed within the pre-polster, an early mesendodermal site, and that it plays a critical role in the differentiation of these cells into hatching gland cells.
Resumo:
Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with similar to 50% protein identity to adenosyl homocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-L-homocysteine, the by-product of S-adenosyl-L-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs(zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.
Resumo:
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass. notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tall and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tall. Imo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Hedgehog family of secreted morphogens specifies the fate of a large number of different cell types within invertebrate and vertebrate embryos, including the muscle cell precursors of the embryonic myotome of zebrafish. Formation of Hedgehog-sensitive muscle fates is disrupted within homozygous zebrafish mutants of the you-type class, the majority of which disrupt components of the Hedgehog (HH) signal transduction pathway. We have undertaken a phenotypic and molecular characterisation of one of these mutants, you, which we show results from mutations within the zebrafish orthologue of the mammalian, gene scube2. This gene encodes a member of the Scube family of proteins, which is characterised by several protein motifs including EGF and CUB domains. Epistatic and molecular analyses position Scube2 function upstream of Smoothened (Smoh), the signalling component of the HH receptor complex, suggesting that Scube2 may act during HH signal transduction prior to, or during, receipt of the HH signal at the plasma membrane. In support of this model we show that scube2 has homology to cubilin, which encodes an endocytic receptor involved in protein trafficking suggesting a possible mode of function for Scube2 during HH signal transduction. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Acoustic stimuli within the sonic range are effective triggers of C-type escape behaviours in fish. We have previously shown that fish have an acute sensitivity to infrasound also, with acceleration thresholds in the range of 10(-5) m s(-2). In addition, infrasound at high intensities around 10(-2) m s(-2) elicits strong and sustained avoidance responses in several fish species. In the present study, the possible triggering of C-escapes by infrasonic single-cycle vibrations was examined in juvenile roach Rutilus rutilus. The fish were accelerated in a controlled and quantifiable manner using a swing system. The applied stimuli simulated essential components of the accelerations that a small fish would encounter in the hydrodynamic flow field produced by a predatory fish. Typical C- and S-type escape responses were induced by accelerations within the infrasonic range with a threshold of 0.023 m s(-2) for an initial acceleration at 6.7 Hz. Response trajectories were on average in the same direction as the initial acceleration. Unexpectedly, startle behaviours mainly occurred in the trailing half of the test chamber, in which the fish were subjected to linear acceleration in combination with compression, i.e. the expected stimuli produced by an approaching predator. Very few responses were observed in the leading half of the test chamber, where the fish were subjected to acceleration and rarefaction, i.e. the stimuli expected from a suction type of predator. We conclude that particle acceleration is essential for the directionality of the startle response to infrasound, and that the response is triggered by the synergistic effects of acceleration and compression.
Resumo:
The SOX family of transcription factors are found throughout the animal kingdom and are important in a variety of developmental contexts. Genome analysis has identified 20 Sox genes in human and mouse, which can be subdivided into 8 groups, based on sequence comparison and intron-exon structure. Most of the SOX groups identified in mammals are represented by a single SOX sequence in invertebrate model organisms, suggesting a duplication and divergence mechanism has operated during vertebrate evolution. We have now analysed the Sox gene complement in the pufferfish, Fugu rubripes, in order to shed further light on the diversity and origins of the Sox gene family. Major differences were found between the Sox family in Fugu and those in humans and mice. In particular, Fugu does not have orthologues of Sry, Sox,15 and Sox30, which appear to be specific to mammals, while Sox19, found in Fugu and zebrafish but absent in mammals, seems to be specific to fishes. Six mammalian Sox genes are represented by two copies each in Fugu, indicating a large-scale gene duplication in the fish lineage. These findings point to recent Sox gene loss, duplication and divergence occurring during the evolution of tetrapod and teleost lineages, and provide further evidence for large-scale segmental or a whole-genome duplication occurring early in the radiation of teleosts. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomaintype transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a coreceptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.
Resumo:
The early axon scaffolding in the embryonic vertebrate brain consists of a series of ventrally projecting axon tracts that grow into a single major longitudinal pathway connected across the midline by commissures. We have investigated the role of Brother of CDO (BOC), an immunoglobulin (Ig) superfamily member distantly related to the Roundabout (Robo) family of axon-guidance receptors, in the development of this embryonic template of axon tracts in the zebrafish brain. A zebrafish homologue of BOC was isolated and shown to be expressed predominantly in the developing neural plate and later in the neural tube and developing brain. Zebrafish boc was initially highly localized to discrete bands in the mid- and hindbrain, but, as the major brain subdivisions emerged, it became more evenly expressed along the rostrocaudal axis, particularly in dorsal regions. The function of zebrafish boc was examined by a loss-of-function approach. Analysis of embryos injected with antisense morpholinos designed against boc revealed highly selective defects in the development of dorsoventrally projecting axon tracts. Loss of boc caused ventrally projecting axons, particularly those arising from the presumptive telencephalon, to follow aberrant trajectories. These data indicate that boc is an axon-guidance molecule playing a fundamental role in pathfinding during the early patterning of the axon scaffold in the embryonic vertebrate brain. (c) 2005 Wiley-Liss, Inc.
Resumo:
The zebrafish golden mutation is characterized by the production of small and irregular-shaped melanin granules, resulting in a lightening of the pigmented lateral stripes of the animal. The recent positional cloning and localization of the golden gene, combined with genotype-phenotype correlations of alleles of its human orthologue (SLC24A5) in African-American and African-Caribbean populations, provide insights into the genetic and molecular basis of human skin colour. SLC24A5 promotes melanin deposition through maturation of the melanosome, highlighting the importance of ion-exchange in the function of this organelle.