4 resultados para winged aphids

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophiles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent selection. Although laboratory and field studies provide evidence that 'ecological speciation' can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within cooperative societies, group members share in caring for offspring. Although division of labour among group members has been relatively well studied in insects, less is known about vertebrates. Most studies of avian helping focus solely on the extent to which helpers provision the offspring, however, helpers can participate in everything from nest building to predator defence. Bad provisioners may, for example, not be as 'uncooperative' as they appear. if they are good defenders. Thus, the distribution of helping tasks between group members should have important implications for our interpretation of group dynamics. Here, we compare two distinct forms of helping behaviour in the cooperatively breeding noisy miner (Manorina melanocephala): chick provisioning and mobbing nest predators. We show that the way in which individual helpers invest in these two helping behaviours varies enormously across individuals and among social groups. Good provisioners often contributed relatively little to mobbing and vice versa. Indeed, (18%) of helpers only mobbed, 22% just provisioned, whereas 60% of helpers performed both forms of helping. Across nests, provisioning was significantly negatively correlated with mobbing effort. We suggest that small differences in the costs or benefits of different aspects of helping (due to differences in age, relatedness or social status) have a big impact on the division of labour within a group. Consequently, social groups can be made up from individuals who often specialise in one helping behaviour, and/or helpers who perform a number of behaviours to differing degrees. Division of labour within social groups will, therefore, have important consequences for the maintenance of cooperatively breeding in vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ornithologists, and especially northern hemisphere ornithologists, have traditionally thought of migration as an annual return movement of populations between regular breeding and non-breeding grounds. Problems arise because selection does not ordinarily act on populations and because organisms of many taxa (including birds) are clearly migrants, but fail to undertake movements of the kind described. There are also extensive return movements that are not migratory. I propose that it is more useful to think of migration as a syndrome of behavioral and other traits that function together within individuals, and that such a syndrome provides a common ground across taxa from aphids to albatrosses. Large-scale return movements of populations are one outcome of the syndrome. Similar behavioral and physiological traits serve both to define migration and to provide a test for it. I use two insect (Hemipteran) examples to illustrate migratory syndromes and to demonstrate that, in many migrants, behavior and physiology correlate with life history and morphological traits to form syndromes at two levels. I then compare the two Hemipterans with migration in birds, butterflies, and fish to assess the question of whether there are migratory syndromes in common between these diverse migrants. Syndromes are more similar at the level of behavior than when morphology and life history traits are included. Recognizing syndromes leads to important evolutionary questions concerning migration strategies, trade-offs, the maintenance of genetic variance and the responses of migratory syndromes to both similar and different selective regimes.