4 resultados para weevils
em University of Queensland eSpace - Australia
Resumo:
Habitat use, diet and body-size variation are examined in weevils from Heard Island. with specific attention being given to the Ectemnorhinus viridis species complex. E. viridis shows marked altitudinal variation in body size and vestiture, but there are no consistent associations between body size and diet. nor are there consistent among-individual differences in conventional taxonomic characters. Thus, the status of E. viridis as a single, variable species is maintained. This species occurs from sea level to 600 rn and it feeds on vascular plants and bryophytes. Canonopsis sericeus also feeds on bryophytes and vascular plants and occurs over a narrower altitudinal range. Palirhoeus eatoni is restricted to the surpralittoral zone where it feeds on marine algae and lichens. Bothrometopus brei,is and B. gracilipes both feed on cryptogams, with the former species occurring from sea level to 450 m. and the latter from 50 to 550 m above sea level. In all species, males are smaller than females and there is a size cline such that populations from higher elevations are smaller than those at lower altitudes. This cline is the reverse of that found on the Prince Edward Islands which, unlike Heard Island, lie to the north of the Antarctic Polar Frontal Zone. This difference in body-size clines between weevils on the two island groups is ascribed to the shorter growing season on the colder Heard Island. The information presented here supports previous ideas regarding the evolution of the Ectemnorhinus-group of weevils on the South Indian Ocean Province Islands, although it suggests that subsequent tests of these hypotheses would profit from the inclusion of molecular systematic work.
Resumo:
Cone traits (volatile components and thermogenesis) of three cycad species in the genus Macrozamia were examined for differences related to their specific insect pollinators, the weevil, Tranes spp., or the thrips, Cycadothrips chadwicki. Linalool (>80% of emissions) dominated cone volatile components of M. machinii (Tranes-pollinated) and beta-myrcene was a minor component (
Resumo:
Experiments carried out to investigate the reproductive ecology of the Australian cycad Lepidozamia peroffskyana (Regal, Bull. Soc. Imp. Nat. Mosc. 1857, 1: 184) revealed that this species is pollinated exclusively by host-specific Tranes weevils (Pascoe 1875). The weevils carry out their life cycle within the tissues of the male cones but also visit the female cones in large numbers. Female cones from which insects ( but not wind) were excluded had a pollination rate that was essentially zero. In contrast, female cones from which wind ( but not insects) were excluded had a pollination rate comparable with naturally pollinated cones. Assessment of Tranes weevil pollen load indicated that they are effective pollen-carriers. No other potential insect pollinators were observed on cones of L. peroffskyana. Sampling of airborne loads of cycad pollen indicated that wind-dispersed grains were not consistently recorded beyond a 2-m radius surrounding pollen-shedding male cones. The airborne load of cycad pollen in the vicinity of pollination-receptive female cones was minimal, and the spatial distribution of the coning population indicated that receptive female cones did not usually occur close enough to pollen-shedding male cones for airborne transfer of pollen to explain observed natural rates of seed set. These multiple lines of evidence suggest that wind-once considered the only pollination vector for cycads and other gymnosperms-plays only a minimal role in the pollination of L. peroffskyana, if any at all. The global diversity of insects associated with cycads suggests that some lineages of pollinating beetles may have been associated with cycad cones since Mesozoic times.
Resumo:
Complementary field and laboratory tests confirmed and quantified the pollination abilities of Tranes sp. weevils and Cycadothrips chadwicki thrips, specialist insects of their respective cycad hosts, Macrozamia machinii and M. lucida. No agamospermous seeds were produced when both wind and insects were excluded from female cones; and the exclusion of wind-vectored pollen alone did not eliminate seed set, because insects were able to reach the cone. Based on enclosure pollination tests, each weevil pollinates an average 26.2 ovules per cone and each thrips 2.4 ovules per cone. These pollinators visited similar numbers of ovules per cone in fluorescent dye tests that traced insect movement through cones. Fluorescent dye granules deposited by Cycadothrips were concentrated around the micropyle of each visited ovule, the site of pollen droplet release, where pollen must be deposited to achieve pollination. In contrast, Tranes weevils left dye scattered on different areas of each visited ovule, indicating that chance plays a greater role in this system. Each weevil and 25 thrips delivered 6.2 and 5.2 pollen grains, respectively, on average, to each visited ovule per cone, based on examination of dissected pollen canals. In sum, the pollination potential of 25 Cycadothrips approximates that of one Tranes weevil.