215 resultados para watershed conservation areas

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clearing of native vegetation is a major threat to biodiversity in Australia. In Queensland, clearing has resulted in extensive ecosystem transformation, especially in the more fertile parts of the landscape. In this paper, we examine Queensland, Australian and some overseas evidence of the impact of clearing and related fragmentation effects on terrestrial biota. The geographic locus is the semi-arid regions. although we recognise that coastal regions have been extensively cleared. The evidence reviewed here suggests that the reduction of remnant vegetation to 30% will result in the loss of 25-35% of vertebrate fauna, with the full impact not realised for another 50-100 years, or even longer. Less mobile, habitat specialists and rare species appear to be particularly at risk. We propose three broad principles For effective biodiversity conservation in Queensland: (i) regional native vegetation retention thresholds of 50910: (ii) regional ecosystem thresholds of 30%: and (iii) landscape design and planning principles that protect large remnants, preferably > 2000 ha, as core habitats. Under these retention thresholds. no further clearing would be permitted in the extensively cleared biogeographic regions such as Brigalow Belt and New England Tablelands. Some elements of the biota. however, will require more detailed knowledge and targeted retention and management to ensure their security. The application of resource sustainability and economic criteria outlined elsewhere in this volume should be applied to ensure that the biogeographic regions in the north and west of Queensland that are largely intact continue to provide extensive wildlife habitat.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To maximise the potential of protected areas, we need to understand the strengths and weaknesses in their management and the threats and stresses that they face. There is increasing pressure on governments and other bodies responsible for protected areas to monitor their effectiveness. The reasons for assessing management effectiveness include the desire by managers to adapt and improve their management strategies, improve planning and priority setting and the increasing demands for reporting and accountability being placed on managers, both nationally and internationally. Despite these differing purposes for assessment, some common themes and information needs can be identified, allowing assessment systems to meet multiple uses. Protected-area management evaluation has a relatively short history. Over the past 20 years a number of systems have been proposed but few have been adopted by management agencies. In response to a recognition of the need for a globally applicable approach to this issue, the IUCN World Commission on Protected Areas developed a framework for assessing management effectiveness of both protected areas and protected area systems. This framework was launched at the World Conservation Congress in Jordan in 2000. The framework provides guidance to managers to develop locally relevant assessment systems while helping to harmonise assessment approaches around the world. The framework is strongly linked to the protected area management process and is adaptable to different types and circumstances of protected areas around the world. Examples from Fraser Island in Australia and the Congo Basin illustrate the use of the framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A rapid increase in the number and size of protected areas has prompted interest in their effectiveness and calls for guarantees that they are providing a good return on investment by maintaining their values. Research reviewed here suggests that many remain under threat and a significant number are already suffering deterioration. One suggestion for encouraging good management is to develop a protected-area certification system: however this idea remains controversial and has created intense debate. We list a typology of options for guaranteeing good protected-area management, and give examples, including: danger lists; self-reporting systems against individual or standardised criteria; and independent assessment including standardised third-party reporting, use of existing certification systems such as those for forestry and farming and certification tailored specifically to protected areas. We review the arguments for and against certification and identify some options, such as: development of an accreditation scheme to ensure that assessment systems meet minimum standards; building up experience from projects that are experimenting with certification in protected areas; and initiating certification schemes for specific users such as private protected areas or institutions like the World Heritage Convention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conservation planning is the process of locating and designing conservation areas to promote the persistence of biodiversity in situ. To do this, conservation areas must be able to mitigate at least some of the proximate threats to biodiversity. Information on threatening processes and the relative vulnerability of areas and natural features to these processes is therefore crucial for effective conservation planning. However, measuring and incorporating vulnerability into conservation planning have been problematic. We develop a conceptual framework of the role of vulnerability assessments in conservation planning and propose a definition of vulnerability that incorporates three dimensions: exposure, intensity, and impact. We review and categorize methods for assessing the vulnerability of areas and the features they contain and identify the relative strengths and weaknesses of each broad approach, Our review highlights the need for further development and evaluation of approaches to assess vulnerability and for comparisons of their relative effectiveness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although the aim of conservation planning is the persistence of biodiversity, current methods trade-off ecological realism at a species level in favour of including multiple species and landscape features. For conservation planning to be relevant, the impact of landscape configuration on population processes and the viability of species needs to be considered. We present a novel method for selecting reserve systems that maximize persistence across multiple species, subject to a conservation budget. We use a spatially explicit metapopulation model to estimate extinction risk, a function of the ecology of the species and the amount, quality and configuration of habitat. We compare our new method with more traditional, area-based reserve selection methods, using a ten-species case study, and find that the expected loss of species is reduced 20-fold. Unlike previous methods, we avoid designating arbitrary weightings between reserve size and configuration; rather, our method is based on population processes and is grounded in ecological theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of systematic conservation planning tools are available to aid in making land use decisions. Given the increasing worldwide use and application of reserve design tools, including measures of site irreplaceability, it is essential that methodological differences and their potential effect on conservation planning outcomes are understood. We compared the irreplaceability of sites for protecting ecosystems within the Brigalow Belt Bioregion, Queensland, Australia, using two alternative reserve system design tools, Marxan and C-Plan. We set Marxan to generate multiple reserve systems that met targets with minimal area; the first scenario ignored spatial objectives, while the second selected compact groups of areas. Marxan calculates the irreplaceability of each site as the proportion of solutions in which it occurs for each of these set scenarios. In contrast, C-Plan uses a statistical estimate of irreplaceability as the likelihood that each site is needed in all combinations of sites that satisfy the targets. We found that sites containing rare ecosystems are almost always irreplaceable regardless of the method. Importantly, Marxan and C-Plan gave similar outcomes when spatial objectives were ignored. Marxan with a compactness objective defined twice as much area as irreplaceable, including many sites with relatively common ecosystems. However, targets for all ecosystems were met using a similar amount of area in C-Plan and Marxan, even with compactness. The importance of differences in the outcomes of using the two methods will depend on the question being addressed; in general, the use of two or more complementary tools is beneficial.