39 resultados para water flow in the soil
em University of Queensland eSpace - Australia
Resumo:
Sea-water intrusion is actively contaminating fresh groundwater reserves in the coastal aquifers of the Pioneer Valley,north-eastern Australia. A three-dimensional sea-water intrusion model has been developed using the MODHMS code to explore regional-scale processes and to aid assessment of management strategies for the system. A sea-water intrusion potential map, produced through analyses of the hydrochemistry, hydrology and hydrogeology, offsets model limitations by providing an alternative appraisal of susceptibility. Sea-water intrusion in the Pioneer Valley is not in equilibrium, and a potential exists for further landward shifts in the extent of saline groundwater. The model required consideration of tidal over-height (the additional hydraulic head at the coast produced by the action of tides), with over-height values in the range 0.5-0.9 m giving improved water-table predictions. The effect of the initial water-table condition dominated the sensitivity of the model to changes in the coastal hydraulic boundary condition. Several salination processes are probably occurring in the Pioneer Valley, rather than just simple landward sea-water advancement from modern sources of marine salts. The method of vertical discretisation (i.e. model-layer subdivision) was shown to introduce some errors in the prediction of watertable behaviour.
Resumo:
Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.
Resumo:
Peptidergic mechanisms influencing the resistance of the gastrointestinal vascular bed of the estuarine crocodile, Crocodylus porosus, were investigated. The gut was perfused in situ via the mesenteric and the celiac arteries, and the effects of different neuropeptides were tested using bolus injections. Effects on vascular resistance were recorded as changes in inflow pressures. Peptides found in sensory neurons [substance P, neurokinin A, and calcitonin gene-related peptide (CGRP)] all caused significant relaxation of the celiac vascular bed, as did vasoactive intestinal polypeptide (VIP), another well-known vasodilator. Except for VIP, the peptides also induced transitory gut contractions. Somatostatin and neuropeptide Y (NPY), which coexist in adrenergic neurons of the C. porosus, induced vasoconstriction in the celiac vascular bed without affecting the gut motility. Galanin caused vasoconstriction and occasionally activated the gut wall. To elucidate direct effects on individual vessels, the different peptides were tested on isolated ring preparations of the mesenteric and celiac arteries. Only CGRP and VIP relaxed the epinephrine-precontracted celiac artery, whereas the effects on the mesenteric artery were variable. Somatostatin and NPY did not affect the resting tonus of these vessels, but somatostatin potentiated the epinephrine-induced contraction of the celiac artery. Immunohistochemistry revealed the existence and localization of the above-mentioned peptides in nerve fibers innervating vessels of different sizes in the gut region. These data support the hypothesis of an important role for neuropeptides in the control of the vascular bed of the gastrointestinal tract in C. porosus.
Resumo:
The effect of N-2 respiration on cerebral blood flow (CBF) velocity on the dorsal surface of cerebellum was examined in the estuarine crocodile, Crocodylus porosus, using epi-illumination microscopy. Twelve minutes of N-2 respiration resulted in a 126% increase in CBF velocity. N-2 respiration had no effect on blood pressure, indicating an underlying cerebral vasodilation. In addition, heart rate increased significantly. Systemic injections of aminophylline and the NO synthase (NOS) inhibitor nitro-L-arginine (L-NA) did not affect the hypoxia induced increase in CBF. We conclude that C. porosus responds to hypoxia with adenosine and nitric oxide (NO) independent cerebral vasodilation, and that this is likely to be a mechanism protecting the brain from energy deficiency during prolonged dives. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The aim of the present study was to compare the protein-free diet, guanidinated casein (GuC) and enzyme hydrolysed casein (EHC) methods for the quantification of endogenous amino acid (AA) flow in the avian ileum. Growing broiler chickens (5 weeks old) were used. All three assay diets were based on dextrose, and in the GuC and EHC diets GuC or EHC were the sole source of N. Endogenous AA flows determined with the use of protein-free diet were considerably lower (P < 0.05) than those determined by the GuC and EHC methods. The, total endogenous AA flows determined by the GuC and EHC methods were almost 3-fold greater (P < 0.05) than those determined by the protein-free diet. The endogenous AA values obtained from GuC and EHC methods were similar (P >0.05), except for the flow of arginine, which was lower (P < 0.05) in the EHC method. Glutamic acid, aspartic acid, threonine and glycine were the predominant endogenous AA present in digesta from the distal ileum. The contents of methionine, histidine and cystine were lower compared with other AA. The method of determination had no effect on the AA composition of endogenous protein, except for threonine, glutamic acid, lysine, arginine and cystine. The concentrations of threonine and arginine were lower (P < 0.05) and that of lysine was higher (P < 0.05) with the EHC method compared with the other two methods. The concentration of glutamic acid was greater (P < 0.05) and that of cystine was lower (P < 0.05) in the EHC and GuC methods compared with the protein-free diet method. The results showed that the ileal endogenous flows of N and AA are markedly enhanced by the presence of protein and peptides, above those determined following feeding of a protein-free diet. It is concluded that the use of EHC and GuC methods enables the measurement of ileal endogenous losses in chickens under normal physiological conditions.
Resumo:
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
To evaluate the long term sustainability of water withdrawals in the United States, a county level analysis of the availability of renewable water resources was conducted, and the magnitudes of human withdrawals from surface water and ground water sources and the stored water requirements during the warmest months of the year were evaluated. Estimates of growth in population and electricity generation were then used to estimate the change in withdrawals assuming that the rates of water use either remain at their current levels (the business as usual scenario) or that they exhibit improvements in efficiency at the same rate as observed over 1975 to 1995 (the improved efficiency scenario). The estimates show several areas, notably the Southwest and major metropolitan areas throughout the United States, as being likely to have significant new storage requirements with the business-as-usual scenario, under the condition of average water availability. These new requirements could be substantially eliminated under the improved efficiency scenario, thus indicating the importance of water use efficiency in meeting future requirements. The national assessment identified regions of potential water sustainability concern; these regions can be the subject of more targeted data collection and analyses in the future.
Resumo:
Load-induced extravascular fluid flow has been postulated to play a role in mechanotransduction of physiological loads at the cellular level. Furthermore, the displaced fluid serves as a carrier for metabolites, nutrients, mineral precursors and osteotropic agents important for cellular activity. We hypothesise that load-induced fluid flow enhances the transport of these key substances, thus helping to regulate cellular activity associated with processes of functional adaptation and remodelling. To test this hypothesis, molecular tracer methods developed previously by our group were applied in vivo to observe and quantify the effects of load-induced fluid flow under four-point-bending loads. Preterminal tracer transport studies were carried out on 24 skeletally mature Sprague Dawley rats. Mechanical loading enhanced the transport of both small- and larger-molecular-mass tracers within the bony tissue of the tibial mid-diaphysis. Mechanical loading showed a highly significant effect on the number of periosteocytic spaces exhibiting tracer within the cross section of each bone. For all loading rates studied, the concentration of Procion Red tracer was consistently higher in the tibia subjected to pure bending loads than in the unloaded, contralateral tibia, Furthermore, the enhancement of transport was highly site-specific. In bones subjected to pure bending loads, a greater number of periosteocytic spaces exhibited the presence of tracer in the tension band of the cross section than in the compression band; this may reflect the higher strains induced in the tension band compared with the compression band within the mid-diaphysis of the rat tibia. Regardless of loading mode, the mean difference between the loaded side and the unloaded contralateral control side decreased with increasing loading frequency. Whether this reflects the length of exposure to the tracer or specific frequency effects cannot be determined by this set of experiments. These in vivo experimental results corroborate those of previous ex vivo and in vitro studies, Strain-related differences in tracer distribution provide support for the hypothesis that load-induced fluid flow plays a regulatory role in processes associated with functional adaptation.
Resumo:
The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.
Resumo:
In disorders such as sleep apnea, sleep is fragmented with frequent EEG-arousal (EEGA) as determined via changes in the sleep-electroencephalogram. EEGA is a poorly understood, complicated phenomenon which is critically important in studying the mysteries of sleep. In this paper we study the information flow between the left and right hemispheres of the brain during the EEGA as manifested through inter-hemispheric asynchrony (IHA) of the surface EEG. EEG data (using electrodes A1/C4 and A2/C3 of international 10-20 system) was collected from 5 subjects undergoing routine polysomnography (PSG). Spectral correlation coefficient (R) was computed between EEG data from two hemispheres for delta-delta(0.5-4 Hz), theta-thetas(4.1-8 Hz), alpha-alpha(8.1-12 Hz) & beta-beta(12.1-25 Hz) frequency bands, during EEGA events. EEGA were graded in 3 levels as (i) micro arousals (3-6 s), (ii) short arousals (6.1-10 s), & (iii) long arousals (10.1-15 s). Our results revealed that in beta band, IHA increases above the baseline after the onset of EEGA and returns to the baseline after the conclusion of event. Results indicated that the duration of EEGA events has a direct influence on the onset of IHA. The latency (L) between the onset of arousals and IHA were found to be L=2plusmn0.5 s (for micro arousals), 4plusmn2.2 s (short arousals) and 6.5plusmn3.6 s (long arousals)
Resumo:
This paper presents major findings from a recent study aiming to systematically determine suitable river sections for local domestic water supply along the Yangtze River in Jiangsu Province, China. On the basis of analysis on the current riverbank utilization and bank stability, accessible and stable river sections in the region were selected. The water quality in these river sections was then studied using a two-dimensional unsteady flow and pollutant transport/transformation model, RBFVM-2D. The model was calibrated and verified against the hydrodynamic data, water quality data and remote sensing data collected from the river. The investigation on the pollution sources along the river identified 56 main pollution point sources. The pollution zones downstream of these point sources are the main threat for the water quality in the river. The model was used to compute the pollution zones. In particular, simulations were conducted to establish the relationship between the extent of the pollution zone and the wastewater discharge rate of the associated point source. These water quality simulation results were combined with the riverbank stability analysis to determine suitable river sections for local domestic water supply.