165 resultados para water erosion
em University of Queensland eSpace - Australia
Resumo:
Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.
Resumo:
This paper describes a rainfall simulator developed for field and laboratory studies that gives great flexibility in plot size covered, that is highly portable and able to be used on steep slopes, and that is economical in its water use. The simulator uses Veejet 80100 nozzles mounted on a manifold, with the nozzles controlled to sweep to and from across a plot width of 1.5 m. Effective rainfall intensity is controlled by the frequency with which the nozzles sweep. Spatial uniformity of rainfall on the plots is high, with coefficients of variation (CV) on the body of the plot being 8-10%. Use of the simulator for erosion and infiltration measurements is discussed.
Resumo:
Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.
Resumo:
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.