55 resultados para vulnerable populations
em University of Queensland eSpace - Australia
Resumo:
Although considerable attention has been given to ethical issues related to clinical research in developing countries, in particular related to HIV therapy, there has been limited focus on health systems research, despite its increasing importance in the light of current trends in development assistance. This paper examines ethical issues related to health systems research in 'post'-conflict situations, addressing both generic issues for developing countries and those issues specific to 'post'-conflict societies, citing examples from the author's Cambodian experience. It argues that the destruction of health infrastructure results in a loss of structures and processes that would otherwise protect prospective research subjects who are part of vulnerable populations. It identifies the growth of health systems research as part of a trend towards sectoral and programmatic development assistance, the emergence of 'knowledge generation' as a form of research linked to development, and the potential for conflict where multilateral and bilateral donors are both primary funders and users of health systems research. It also examines the position of the health system researcher in relation to the sponsors of this research, and the health system being analysed.
Resumo:
We have compared the expression pattern of NMDA receptor subunits (NR1 and NR2A-D)and NRI splice variants (NR1-1a/1b,-2a/2b,-3a/3b,4a/4b) in motor neuron populations from adult Wistar rats that are vulnerable (hypoglossal, XII) or resistant (oculomotor, III) to death in amyotrophic lateral sclerosis (ALS). The major finding was higher levels of expression of the NR2B subunit in the hypoglossal nucleus. Quantitative real-time PCR showed that NR1 was expressed at a greater level than any of the NR2 subunits (> 15 fold greater, P
Resumo:
The Asian tiger mosquito, Aedes albopictus (Skuse), is a known vector of dengue in South America and Southeast Asia. It is naturally superinfected with two strains of Wolbachia endosymbiont that are able to induce cytoplasmic incompatibility (CI). In this paper, we report the strength of CI expression in crosses involving field-caught males. CI expression was found to be very strong in all crosses between field males and laboratory-reared uninfected or wAlbA infected young females. In addition, crossing experiments with laboratory colonies showed that aged super- infected males could express strong CI when mated with young uninfected or wAlbA infected females. These results provide additional evidence that the CI properties of Wolbachia infecting Aedes albopictus are well suited for applied strategies that seek to utilise Wolbachia for host population modification.
Resumo:
We examined the transmission efficiency of 2 strains of Wolbachia bacteria that cause cytoplasmic incompatibility in field populations of Aedes albopictus by polymerase chain reaction assay. We found mainland and island populations throughout Thailand to be superinfected with group A and B bacteria. Of 320 Wolbachia-positive adult mosquitoes, 97.5% were infected with both groups. Single infected individuals of each Wolbachia group were encountered in nearly equal numbers. We screened 550 offspring from 80 field-collected mothers and found the transmission efficiency of group A Wolbachia to be 96.7% and that of group B Wolbachia to be 99.6%. Mothers that did not transmit both Wolbachia infections to all of their offspring were significantly larger in size than those with perfect transmission fidelity. We discuss our findings in relation to the prospects of the use of Wolbachia as a gene-driving mechanism.
Resumo:
The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.
Resumo:
Unidirectional cytoplasmic incompatibility is seen when certain Wolbachia-infected insect populations are crossed. Two hypotheses might explain this phenomenon: superinfections with mutually incompatible strains of Wolbachia producing incompatibility when crossed to individuals infected with only a single bacterial strain or, alternatively, a bacterial dosage model, with differences in Wolbachia densities responsible for the incompatibility. A quantitative PCR assay was set up as a general method to compare Wolbachia densities between populations. Using this assay in unidirectionally incompatible stocks of the mosquito Aedes albopictus, we have determined that densities are significantly higher in Houston than in the Mauritius and Koh Samui stocks. This is consistent with a dosage model for the observed crossing patterns, but does not rule out the possibility that superinfection is the primary cause of the incompatibility.
Resumo:
Cytoplasmic incompatibility is known to occur between strains of both Drosophila simulans and D. melanogaster. Incompatibility is associated with the infection of Drosophila with microorganismal endosymbionts. This paper reports survey work conducted on strains of D. simulans and D. melanogaster from diverse geographical locations finding that infected populations are relatively rare and scattered in their distribution. The distribution of infected populations of D. simulans appears to be at odds with deterministic models predicting the rapid spread of the infection through uninfected populations. Examination of isofemale lines from four localities in California where populations appear to be polymorphic for the infection failed to find evidence for consistent assortative mating preferences between infected and uninfected populations that may explain the basis for the observed polymorphism.
Resumo:
Cytoplasmic incompatibility (CI) describes the phenomenon whereby eggs fertilized by sperm from insects infected with a rickettsial endosymbiont fail to hatch. Unidirectional CI between conspecific populations of insects is a well documented phenomenon. Bidirectional CI has, however, only been described in mosquito populations, and recently between closely related species of parasitic wasps, where it is of interest as both an unusual form of reproductive isolation and as a potential means of insect population suppression. Here we report on the first known example of bidirectional CI between conspecific populations of Drosophila simulans. Further, we show that defects as early as the first cleavage division are associated with CI. This observation suggests that the cellular basis of CI involves disruption of processes before or during zygote formation and that CI arises from defects in the structure and/or function of the sperm during fertilization.
Resumo:
Growing economic globalisation (a means of market extension) may increase the economic vulnerability of firms in modern industries, especially those in which firms experience substantial economies of scale. The possibility is explored that globalisation activates competitive pressures that forces firms into a situation where their leverage (fixed costs relative to variable costs, or overhead cost relative to operating costs or capital intensity) rises substantially. Consequently, they become increasingly vulnerable to a sudden adverse change in economic conditions, such as a collapse in the demand for their industry’s product. This is explored for monopolistically competitive markets and also for oligopolistic markets of the type considered and modelled by Sweezy using kinked demand curves. In addition, globalisation is hypothesised to induce firms to become more uniformly efficient. While this has static efficiency advantages, this lack of heterogeneity in productive efficiency of firms can make for economic inefficiency in the adjustment of the industry to altered economic conditions. It is shown that lack of variation in the economic efficiency of firms can impede the speed of market adjustment to new equilibria and may destabilise market equilibria.
Resumo:
The Lake Eacham rainbowfish (Melanotaenia eachamensis) was declared extinct in the wild in the late 1980s after it disappeared from its only known locality, an isolated crater lake in northeast Queensland. Doubts have been raised about whether this taxon is distinct from surrounding populations of the eastern rainbowfish (Melanotaenia splendida splendida). We examined the evolutionary distinctiveness of M. eachamensis, obtained from captive stocks, relative to M. s. splendida through analysis of variation in mtDNA sequences, nuclear microsatellites, and morphometric characters Captive M. eachamensis had mtDNAs that were highly divergent from those in most populations of M. s. splendida. A broader geographic survey using RFLPs revealed some populations initially identified as M. s. splendida, that carried eachamensis mtDNA, whereas some others had mixtures of eachamensis and splendida mtDNA. The presence of eachamensis-like mtDNA in these populations could in principle be due to (1) sorting of ancestral polymorphisms, (2) introgression of M. eachamensis mtDNA into M. s. splendida, or (3) incorrect species boundaries, such that some populations currently assigned to M. s. splendida are M. eachamensis or are mixtures of the two species. These alternatives hypotheses were evaluated through comparisons of four nuclear microsatellite loci and morphometrics and meristics. In analyses of both data sets, populations of M. s. splendida with eachamensis mtDNA were more similar to captive M. eachamensis than to M. s. splendida with splendida mtDNA, supporting hypothesis 3. These results are significant for the management of M. eachamensis in several respects. First the combined molecular and morphological evidence indicates that M. eachamensis is a distinct species and a discrete evolutionarily significant unit worthy of conservation effort. Second it appears that the species boundary between M. eachamensis and M. s. splendida has been misdiagnosed such that there are extant populations on the Atherton Tableland as well as areas where both forms coexist. Accordingly we suggest that M. eachamensis be listed as vulnerable, rather than critical (or extinct in the wild). Third, the discovery of extant but genetically divergent populations of M. eachamensis on the Atherton Tableland broadens the options for future reintroductions to Lake Eacham.
Resumo:
The World Health Organization (WHO) MONICA Project is a 10-year study monitoring trends and determinants of cardiovascular disease in geographically defined populations. Data were collected from over 100 000 randomly selected participants in two risk factor surveys conducted approximately 5 years apart in 38 populations using standardized protocols. The net effects of changes in the risk factor levels were estimated using risk scores derived from longitudinal studies in the Nordic countries. The prevalence of cigarette smoking decreased among men in most populations, but the trends for women varied. The prevalence of hypertension declined in two-thirds of the populations. Changes in the prevalence of raised total cholesterol were small but highly correlated between the genders (r = 0.8). The prevalence of obesity increased in three-quarters of the populations for men and in more than half of the populations for women. In almost half of the populations there were statistically significant declines in the estimated coronary risk for both men and women, although for Beijing the risk score increased significantly for both genders. The net effect of the changes in the risk factor levels in the 1980s in most of the study populations of the WHO MONICA Project is that the rates of coronary disease are predicted to decline in the 1990s.
Resumo:
The gross morphology, histology, and ultrastructure of the thyroid gland of the koala, Phascolarctos cinereus, is described. Generally, the glands were found to contain large-diameter follicles in association with an epithelium of low height. Morphometric analysis demonstrated a high relative thyroid weight (0.3 +/- 0.2 g/kg) for koalas compared with the 0.07-0.24 g/kg typical of eutherian mammals and 0.03-0.1 g/kg found in other marsupials. The relative thyroid weight of glands (0.33 +/- 0.21 g/kg) from the coastal population (less than 28 km from the coastline) was found to be significantly higher (ANOVA: P = 0.007, significant at the 1% level) than that for glands (0.21 +/- 0.11 g/kg) of noncoastal koalas (greater than 28 km from the coastline). Follicle size was positively correlated (at the 0.1% level) with relative thyroid weight in the overall koala sample. The presence of C cells, occurring singly in the epithelial layer, was demonstrated in electron micrographs. Structural features such as low epithelial height, large follicle length and width, and large intercellular spaces in association with low concentrations of free TS (3.3 +/- 2.1 pM) and free T-3 (1.4 +/- 0.9 pM) as reported previously (Lawson et al., 1996) are consistent with an unusually low level of glandular activity in the koala thyroid even though iodine concentrations in the thyroid gland [4.7 +/- 1.6 mg/g (dry weight)] as well as leaf [0.8 +/- 0.3 mu g (dry weight)] and soil samples [3.8 mu g/g (dry weight)] from the koalas' habitat appear unremarkable. (C) 1998 Academic Press.
Resumo:
Most populations and some species of ticks of the genera Boophilus (5 spp.) and Rhipicephalus (ca. 75 spp.) cannot be distinguished phenotypically. Moreover, there is doubt about the validity of species in these genera. I studied the entire second internal transcribed spacer (ITS 2) rRNA of 16 populations of rhipicephaline ticks to address these problems: Boophilus,microplus from Australia, Kenya, South Africa and Brazil (4 populations); Boophilus decoloratus from Kenya; Rhipicephalus appendiculatus from Kenya, Zimbabwe and Zambia (7 populations); Rhipicephalus zambesiensis from Zimbabwe (3 populations); and Rhipicephalus evertsi from Kenya. Each of the 16 populations had a unique ITS 2, but most of the nucleotide variation occurred among species and genera. ITS 2 rRNA can be used to distinguish the populations and species of Boophilus and Rhipicephalus studied here. Little support was found for the hypothesis that B. microplus from Australia and South Africa are different species. ITS 2 appears useful for phylogenetic inference in the Rhipicephalinae because in genetic distance, maximum likelihood, and maximum parsimony analyses, most branches leading to species had >95% bootstrap support. Rhipicephalus appendiculatus and R, zambeziensis are closely related, yet their ITS 2 sequences could be distinguished unambiguously. This lends weight to a previous proposal that Rhipicephalus sanguineus and Rhipicephalus turanicus, and Rhipicephalus pumlilio and Rhipicephalus camicasi, respectively, are conspecific, because each of these pairs of species had identical sequences for ca. 250 bp of ITS 2 rRNA.