44 resultados para volume holographic grating
em University of Queensland eSpace - Australia
Resumo:
Holographic interferometry measurements have been performed on high-speed, high-temperature gas flows with a laser output tuned near a resonant sodium transition. The technique allows the detection and quantification of the sodium concentration in the flow. By controlling the laser detuning and seeded sodium concentration, we performed flow visualization in low-density flows that are not normally detectable with standard interferometry. The technique was also successfully used to estimate the temperature in the boundary layer of the flow over a flat plate.
Resumo:
The artificial dissipation effects in some solutions obtained with a Navier-Stokes flow solver are demonstrated. The solvers were used to calculate the flow of an artificially dissipative fluid, which is a fluid having dissipative properties which arise entirely from the solution method itself. This was done by setting the viscosity and heat conduction coefficients in the Navier-Stokes solvers to zero everywhere inside the flow, while at the same time applying the usual no-slip and thermal conducting boundary conditions at solid boundaries. An artificially dissipative flow solution is found where the dissipation depends entirely on the solver itself. If the difference between the solutions obtained with the viscosity and thermal conductivity set to zero and their correct values is small, it is clear that the artificial dissipation is dominating and the solutions are unreliable.
Resumo:
A copolymer of X-hydroxyethyl methacrylate (HEMA) with 2-ethoxy ethyl methacrylate (EEMA) was synthesized and the molecular mobility, free volume, and density properties examined as a function of composition. These properties were correlated with the equilibrium water uptake in order to determine which of the properties were most influential in causing high water sorption, as these materials are suitable candidates for hydrogel systems. It was found that the polar HEMA repeat unit results in a rigid, glassy sample at room temperature due to the high degree of hydrogen bonding between chains whereas high EEMA content leads to rubbery samples with subambient glass transition temperatures. The free volume properties on the molecular scale measured by positron annihilation Lifetime spectroscopy (PALS) showed that higher HEMA content led to smaller, fewer holes and a lower free volume fraction than EEMA. Therefore the high water uptake of HEEMA-containing copolymers is largely related to the high polarity of the HEMA unit compared to EEMA, despite the low content of free volume into which the water can initially diffuse. Trends in density with copolymer composition, as measured on a macroscopic level, differs to that seen by PALS and indicates that the two techniques are measuring different scales of packing. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Free-piston-driven expansion tubes are capable of generating flaw conditions over a wide range of enthalpies ranging from orbital up to superorbital velocities. Initial optical measurements aimed at investigating the flow in such a facility are presented. Emission studies were used to identify impurities in the how and to investigate spectral regions that are accessible by optical techniques. At moderate enthalpies, it was found that significant radiation resulted from metallic contaminants. At high enthalpies, the spectrum consisted of a number of atomic lines together with a broadband background component indicative of the presence of electrons. The presence of this radiation may limit the applicability of optical techniques that require spectral regions free from the influence of atomic transitions or background radiation. Emission spectroscopy (through Stark broadened hydrogen lines) and two-wavelength holographic interferometry were used to measure the electron number density behind a bow shock on a blunt body at conditions where significant ionization was observed. They yielded average concentrations of (3 +/- 1) x 10(17) cm(-3) from the emission measurements and (3.8 +/- 0.6) x 10(17) cm(-3) from the interferometry.
Resumo:
Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases, Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus, Large errors in the simulated results were observed if the phase-segregation was not considered.
Resumo:
Bioelectrical impedance analysis (BIA) has been reported to be insensitive to changes in water volumes in individual subjects, This study was designed to investigate the effect on the intra- and extracellular resistances (Ri and Re) of the segments of subjects for whom body water was changed without significant change to the total amount of electrolyte in the respective fluids, Twelve healthy adult subjects were recruited. Ri and Re of the leg, trunk, and arm of the subjects were determined from BIA measures prior to commencement of two separate studies that involved intervention, resulting in a loss/gain of body water effected either bt a sauna followed by water intake (study 1) or by ingestion (study 2). Ri and Re of the segments were also determined at a number of times following these interventions, The mean change in body water, expressed as a percentage of body weight, was 0.9% in study 1 and 1.25% in study 2. For each study, the results for each subject were normalized for each limb to the initial (prestudy) value and then the normalized results for each segment were pooled for all subjects, ANOVA of these pooled results failed to demonstrate any significant differences between the normalized mean values of Ri or Re of the segments measured through the course of each study, The failure to detect a change in Ri or Re is explained in terms of the basic theory of BIA.
Resumo:
The free running linewidth of an external cavity grating feedback diode laser is on the order of a few megahertz and is limited by the mechanical and acoustic vibrations of the external cavity. Such frequency fluctuations can be removed by electronic feedback. We present a hybrid stabilisation technique that uses both a Fabry-Perot confocal cavity and an atomic resonance to achieve excellent short and long term frequency stability. The system has been shown to reduce the laser linewidth of an external cavity diode laser by an order of magnitude to 140 kHz, while limiting frequency excursions to 60 kHz relative to an absolute reference over periods of several hours. The scheme also presents a simple way to frequency offset two lasers many gigahertz apart which should find a use in atom cooling experiments, where hyperfine ground-state frequency separations are often required.
Resumo:
I noted with interest the article by Drs Perrin and Guex, entitled &dquo;Edema and leg volume: Methods of assessment,&dquo; published in Angiology 51:9-12, 2000. This was a timely and comprehensive review of the various methods in clinical use for the assessment of peripheral edema, notably in the leg. I would like to take this opportunity to alert readers to a further technique useful for this purpose, namely, bioelectrical impedance analysis. An early reportl described its use for the measurement of edema in the leg, but other than its successful use for the assessment of edema in the arm following masteCtoMy,2,1 the potential of the method remains to be fully realized. This is unfortunate since the method directly and quantifiably measures edema.
Resumo:
The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sys(Vol)) was 1.38 +/- 0.09% (n = 17),1.41 +/- 0.09% (n = 12) and 0.83 +/- 0.07% (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sys(Vol) decreased by 30% when the tubular system was fully depolarized and decreased by 15% when membrane cholesterol was depleted from the tubular system with methyl-beta-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 mum. There was also an increase by 30% and a decrease by 25% in t-sys(Vol) when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50% hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sys(Vol) expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9% of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle.
Resumo:
Background: Over-ventilation causing low arterial carbon dioxide levels (PaCO2) has been associated with the development of neonatal chronic lung disease and adverse outcomes. This may occur very soon after birth. Aim: To investigate the effect on PaCO2 and oxygenation of very premature lambs resuscitated with different tidal volumes and PEEP. Methods: Anaesthetised lambs delivered at 126 days gestation were randomised to 15 min resuscitation with 3 regimes: (1) Laerdal resuscitation bag (B) with 100% oxygen and no PEEP, (2) fixed tidal volume (VT) of 5 mL/kg, or (3) VT of 10 mL/kg, both delivered with a Babylog 8000 ventilator in volume guarantee mode with 8 cm H2O PEEP and variable FiO2. Frequent blood gases were measured and VT, mean airway pressure (Paw), minute volume (MV), ventilation rate (VR), respiratory system compliance (Crs) and alveolar/arterial oxygen difference (AaDO2) were recorded. Results: Twenty lambs were studied. B (1) was associated with more variable VT and peak inspiratory pressures (PIP) compared to fixed tidal volumes (2 and 3). The lambs ventilated with 10 mL/kg were over-ventilated, those ventilated with 5 mL/kg were slightly under-ventilated. Those ventilated with the Laerdal bag had a mean VT of 7.5 mL/kg and were normocarbic. The different tidal volumes had little effect on oxygenation. PEEP improved oxygenation. The table shows the values at 15 minutes expressed as mean and SEM. TABLE. No caption av... TABLE. No caption av... Image Tools Conclusion: Very premature lambs can be effectively resuscitated from birth using volume guarantee ventilation. Within minutes of birth different tidal volumes had a large effect on PaCO2 and no effect on oxygenation. Studies are needed to determine the appropriate tidal volume for resuscitating very premature infants to maintain acceptable levels of PaCO2. © International Pediatrics Research Foundation, Inc. 2004. All Rights Reserved.