2 resultados para voltage source converters
em University of Queensland eSpace - Australia
Resumo:
We show that two evanescently coupled χ((2)) parametric down-converters inside a Fabry-Perot cavity provide a tunable source of quadrature squeezed light, Einstein-Podolsky-Rosen (EPR) correlations and quantum entanglement. Analyzing the operation in the below threshold regime, we show how these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources.
Resumo:
New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single DC-AC inverter connected to a series string of PV modules, or many small DC-AC inverters which connect one or two modules directly to the AC grid. This paper shows that a "converter-per-module" approach offers many advantages including individual module maximum power point tracking, which gives great flexibility in module layout, replacement, and insensitivity to shading; better protection of PV sources, and redundancy in the case of source or converter failure; easier and safer installation and maintenance; and better data gathering. Simple nonisolated per-module DC-DC converters can be series connected to create a high voltage string connected to a simplified DC-AC inverter. These advantages are available without the cost or efficiency penalties of individual DC-AC grid connected inverters. Buck, boost, buck-boost and Cuk converters are possible cascadable converters. The boost converter is best if a significant step up is required, such as with a short string of 12 PV modules. A string of buck converters requires many more modules, but can always deliver any combination of module power. The buck converter is the most efficient topology for a given cost. While flexible in voltage ranges, buck-boost and Cuk converters are always at an efficiency or alternatively cost disadvantage.