72 resultados para virtual space
em University of Queensland eSpace - Australia
Resumo:
The pedagogical exercise described here was used to investigate how spatial communication about the manipulation of objects in a virtual and physical space is communicated between remote partners. It continues work done by others. Where it differs from previous research in this area is in its use of a qualitative methodology to study how these types of interactions are structured, communicated and interpreted via text-based media. What emerged from the qualitative analysis are new insights over the previous quantitative investigations. This paper reports on completed research.
Resumo:
Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.
Resumo:
The concept of the virtual organization (VO) has engendered great interest in the literature, yet there is still little common understanding of the concept, as evidenced by the multitude of labels applied to VOs. In this article, we focus on a “Weberian-ideal-type” definition of the interorganizational VO, posited in our earlier work (Kasper-Fuehrer and Ashkanasy 2001). We argue, however, that this definition left unanswered critical questions relating to the nature and effects of interorganizational VOs. We answer these questions here by explicating the terms in the definition and deriving ten corollaries, or “natural consequences” of our definition. The corollaries posit that interorganizational VOs are temporary in nature, are network organizations, are independent, and are based on swift trust. We suggest further that interorganizational VOs enable small to medium enterprises to exploit market opportunities, and enable VO member organizations to create a value-adding partnership. We also identify information and communication technology (ICT) as the essential enabler of VOs. Finally, we argue that interorganizational VOs act as a single organizational unit and that they therefore constitute a uniquely distinguishable organizational form. We conclude with suggestions for further research, including trust, organizational behavior, transaction economics, virtual HRM, and business strategy.
Resumo:
The generalized Gibbs sampler (GGS) is a recently developed Markov chain Monte Carlo (MCMC) technique that enables Gibbs-like sampling of state spaces that lack a convenient representation in terms of a fixed coordinate system. This paper describes a new sampler, called the tree sampler, which uses the GGS to sample from a state space consisting of phylogenetic trees. The tree sampler is useful for a wide range of phylogenetic applications, including Bayesian, maximum likelihood, and maximum parsimony methods. A fast new algorithm to search for a maximum parsimony phylogeny is presented, using the tree sampler in the context of simulated annealing. The mathematics underlying the algorithm is explained and its time complexity is analyzed. The method is tested on two large data sets consisting of 123 sequences and 500 sequences, respectively. The new algorithm is shown to compare very favorably in terms of speed and accuracy to the program DNAPARS from the PHYLIP package.
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
It is known that some Virtual Reality (VR) head-mounted displays (HMDs) can cause temporary deficits in binocular vision. On the other hand, the precise mechanism by which visual stress occurs is unclear. This paper is concerned with a potential source of visual stress that has not been previously considered with regard to VR systems: inappropriate vertical gaze angle. As vertical gaze angle is raised or lowered the 'effort' required of the binocular system also changes. The extent to which changes in vertical gaze angle alter the demands placed upon the vergence eye movement system was explored. The results suggested that visual stress may depend, in part, on vertical gaze angle. The proximity of the display screens within an HMD means that a VR headset should be in the correct vertical location for any individual user. This factor may explain some previous empirical results and has important implications for headset design. Fortuitously, a reasonably simple solution exists.
Resumo:
The interference in a phase space algorithm of Schleich and Wheeler [Nature 326, 574 (1987)] is extended to the hyperbolic space underlying the group SU(1,1). The extension involves introducing the notion of weighted areas. Analytic expressions for the asymptotic forms for overlaps between the eigenstates of the generators of su(1,1) thus obtained are found to be in excellent agreement with the numerical results.[S1050-2947(98)08602-8].
Resumo:
A generalization of the classical problem of optimal lattice covering of R-n is considered. Solutions to this generalized problem are found in two specific classes of lattices. The global optimal solution of the generalization is found for R-2. (C) 1998 Elsevier Science Inc. All rights reserved.
Resumo:
Testing ecological models for management is an increasingly important part of the maturation of ecology as an applied science. Consequently, we need to work at applying fair tests of models with adequate data. We demonstrate that a recent test of a discrete time, stochastic model was biased towards falsifying the predictions. If the model was a perfect description of reality, the test falsified the predictions 84% of the time. We introduce an alternative testing procedure for stochastic models, and show that it falsifies the predictions only 5% of the time when the model is a perfect description of reality. The example is used as a point of departure to discuss some of the philosophical aspects of model testing.