79 resultados para variational mean-field method
em University of Queensland eSpace - Australia
Resumo:
The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.
Resumo:
Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.
Resumo:
This paper presents a new approach for the design of genuinely finite-length shim and gradient coils, intended for use in magnetic resonance imaging equipment. A cylindrical target region is located asymmetrically, at an arbitrary position within a coil of finite length. A desired target field is specified on the surface of that region, and a method is given that enables winding patterns on the surface of the coil to be designed, to produce the desired field at the inner target region. The method uses a minimization technique combined with regularization, to find the current density on the surface of the coil. The method is illustrated for linear, quadratic and cubic magnetic target fields located asymmetrically within a finite-length coil.
Resumo:
This communications describes an electromagnetic model of a radial line planar antenna consisting of a radial guide with one central probe and many peripheral probes arranged in concentric circles feeding an array of antenna elements such as patches or wire curls. The model takes into account interactions between the coupling probes while assuming isolation of radiating elements. Based on this model, computer programs are developed to determine equivalent circuit parameters of the feed network and the radiation pattern of the radial line planar antenna. Comparisons are made between the present model and the two-probe model developed earlier by other researchers.
Resumo:
This paper continues the development of a new approach for the design of shim and gradient coils, used in magnetic resonance imaging (MRI) applications. A cylindrical primary coil of radius a and length 2L is placed inside a co-axial shield cylinder of radius b. An active shielding strategy is used to create a desired target field at an arbitrarily specified (cylindrical) location within the primary coil, and to annul the field at a certain radius outside the shield. The form of the interior target field may be chosen arbitrarily by the designer, although zonal and tesseral harmonics are typically used in MRI applications. The method presented here designs coil windings on both the primary and shielding cylinders, to produce fields that conform to the specified interior target field and the annulled field exterior to the shield. An additional feature of the method presented here is that the target field inside the primary coil is matched at two different radii, to improve overall accuracy. The method is illustrated by designing several shielded shim coils, for creating higher order tesseral fields located asymmetrically within the coil. The simpler case of pure zonal fields is discussed separately and applied to the design of some higher order shielded coils.
Resumo:
A new method is presented here for the systematic design of biplanar shielded shim and gradient coils, for use in magnetic resonance imaging (MRI) and other applications. The desired target field interior to the coil is specified in advance, and a winding pattern is then designed to produce a field that matches the target as closely as possible. Both gradient and shim coils can be designed by this approach, and the target region can be located asymmetrically within the coil. The interior target field may be matched at two or more interior locations, to improve accuracy. When shields are present, the winding patterns are designed so that the fields exterior to the biplanar coil are made as small as possible. The method is illustrated here by the design of some transverse gradient and shim coils.
Resumo:
The paper presents a method for designing circular, shielded biplanar coils that can generate any desired field. A particular feature of these coils is that the target field may be located asymmetrically within the coil. A transverse component of the magnetic field produced by the coil is made to match a prescribed target field over the surfaces of two concentric spheres (the diameter of spherical volume) that define the target field location. The paper shows winding patterns and fields for several gradient and shim coils. It examines the effect that the finite coil size has on the winding patterns, using a Fourier-transform calculation for comparison.
Resumo:
Time-harmonic methods are required in the accurate design of RF coils as operating frequency increases. This paper presents such a method to find a current density solution on the coil that will induce some desired magnetic field upon an asymmetrically located target region within. This inverse method appropriately considers the geometry of the coil via a Fourier series expansion, and incorporates some new regularization penalty functions in the solution process. A new technique is introduced by which the complex, time-dependent current density solution is approximated by a static coil winding pattern. Several winding pattern solutions are given, with more complex winding patterns corresponding to more desirable induced magnetic fields.
Resumo:
We propose phase diagrams for an imbalanced (unequal number of atoms or Fermi surface in two pairing hyperfine states) gas of atomic fermions near a broad Feshbach resonance using mean-field theory. Particularly, in the plane of interaction and polarization we determine the region for a mixed phase composed of normal and superfluid components. We compare our prediction of phase boundaries with the recent measurement and find a good qualitative agreement.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.
Resumo:
In this work a new approach for designing planar gradient coils is outlined for the use in an existing MRI apparatus. A technique that allows for gradient field corrections inside the diameter-sensitive volume is deliberated. These corrections are brought about by making changes to the wire paths that constitute the coil windings, and hence, is called the path correction method. The existing well-known target held method is used to gauge the performance of a typical gradient coil. The gradient coil design methodology is demonstrated for planar openable gradient coils that can be inserted into an existing MRI apparatus. The path corrected gradient coil is compared to the coil obtained using the target field method. It is shown that using a wire path correction with optimized variables, winding patterns that can deliver high magnetic gradient field strengths and large imaging regions can be obtained.
Resumo:
We present a theoretical analysis of three-dimensional (3D) matter-wave solitons and their stability properties in coupled atomic and molecular Bose-Einstein condensates (BECs). The soliton solutions to the mean-field equations are obtained in an approximate analytical form by means of a variational approach. We investigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the atom-atom s-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically demonstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for demonstrating the ground state of the Schrodinger-Newton and related equations that describe Bose-Einstein condensates with nonlocal interparticle forces.