4 resultados para vacinação contra o HPV
em University of Queensland eSpace - Australia
Resumo:
One of three lines of mice transgenic for the E6 and E7 genes of human papillomavirus type 16 (HPV16) expressed from an alpha A-crystallin promoter also expresses the transgene ectopically in the skin. This line, designated alpha ACE6E7#19, develops skin disease from 3 months of age, characterised by epidermal hyperplasia and eventual skin loss. Administration of complete Freund's adjuvant (CFA) to alpha ACE6E7#19 mice, but not to nontransgenic littermate controls, induced local epidermal hyperplasia which was histologically similar to the spontaneously arising skin pathology. Local application of 2,4-dinitrochlorobenzene (DNCB) to DNCB-sensitised aACE6E7#19 mice, but not DNCB-sensitised controls, also induced hyperplasia. Treatment with cyclosporin A (CsA) or systemic depletion of CD4+ cells significantly reduced the incidence of skin disease. These data suggest that local inflammation, and cytokines produced by T helper cells, contribute to the induction of hyperplastic skin disease in alpha ACE6E7#19 mice. Spontaneous skin disease with similar histological appearance, frequency, age of onset and severity in alpha ACE6E7#19 mice was observed in scid-/- aACE6E7#19 mice, despite immune paresis. Antigen-specific immune responses and T-cell cytokines a re therefore not necessary for the induction of skin disease. We propose that epidermal hyperplasia associated with HPV16 E6 and E7 expression in skin is accelerated by local secretion of pro-inflammatory cytokines, whose production can be enhanced by activated CD4+ T cells.
Resumo:
Prophylactic vaccines for genital human papillomavirus (HPV) infection have been shown to be feasible in animal models, and suitable vaccine material based on virus-like particles can be produced in bulk at reasonable cost. Initiation of phase III clinical trials will follow definition of trial outcome measures through further epidemiological studies, and development-of assays of host protective immunity. Vaccines could in principle eliminate HPV-related disease, as the human race is the only natural host for the relevant papillomaviruses (PVs). Therapeutic vaccines for genital HPV infection are also possible, but have not yet been demonstrated as feasible in practice because the choice of vaccine antigens is difficult, the method of their optimal delivery is uncertain, and the nature of the relevant antiviral immunity is unknown. PV species specificity will require trials to be conducted in man, which will slow definition of an ideal vaccine.
Resumo:
The 18th international papillomavirus conference took place in Barcelona, Spain in July 2000. The HPV clinical workshop was jointly organised with the annual meeting of the Spanish Association of Cervical Pathology and Colposcopy. The conference included 615 abstracts describing ongoing research in epidemiology, diagnosis/screening, treatment/prognosis, immunology/human immunodeficiency virus, vaccine development/trials, transformation/progression, replication, transcription/translation, viral protein functions, and viral and host interactions. This leader summarises the highlights presented at the conference (the full text of the abstracts and lectures can be found at www.hpv2000.com). Relevant material in Spanish can be found at www.aepcc. org.