9 resultados para uses and gratification
em University of Queensland eSpace - Australia
Resumo:
Objective: The purpose of this study was to determine the frequency of use of play equipment in public schools and parks in Brisbane, Australia, and to estimate an annual rate of injury per use of equipment, overall and for particular types of equipment. Methods: Injury data on all children injured from playground equipment and seeking medical attention at the emergency department of either of the two children's hospitals in the City of Brisbane were obtained for the years 1996 and 1997. Children were observed at play on five different pieces of play equipment in a random sample of 16 parks and 16 schools in the City of Brisbane. Children injured in the 16 parks and schools were counted, and rates of injury and use were calculated. Results: The ranked order for equipment use in the 16 schools was climbing equipment (3762 uses), horizontal ladders (2309 uses), and slides (856 uses). Each horizontal ladder was used 2.6 times more often than each piece of climbing equipment. Each horizontal ladder was used 7.8 times more than each piece of climbing equipment in the sample of public parks. Slides were used 4.6 times more than climbing equipment in parks and 1.2 times more in public schools. The annual injury rate for the 16 schools and 16 parks under observation was 0.59/100000 and 0.26/100000 uses of equipment, respectively. Conclusions: This study shows that annual number of injuries per standardized number of uses could be used to determine the relative risk of particular pieces of playground equipment. The low overall rate of injuries/100000 uses of equipment in this study suggests that the benefit of further reduction of injury in this community may be marginal and outweigh the economic costs in addition to reducing challenging play opportunities.
Resumo:
Most of the hydrogen production processes are designed for large-scale industrial uses and are not suitable for a compact hydrogen device to be used in systems like solid polymer fuel cells. Integrating the reaction step, the gas purification and the heat supply can lead to small-scale hydrogen production systems. The aim of this research is to study the influence of several reaction parameters on hydrogen production using liquid phase reforming of sugar solution over Pt, Pd, and Ni supported on nanostructured supports. It was found that the desired catalytic pathway for H-2 production involves cleavage of C-C, C-H and O-H bonds that adsorb on the catalyst surface. Thus a good catalyst for production of H2 by liquid-phase reforming must facilitate C-C bond cleavage and promote removal of adsorbed CO species by the water-gas shift reaction, but the catalyst must not facilitate C-O bond cleavage and hydrogenation of CO or CO2. Apart from studying various catalysts, a commercial Pt/gamma-alumina catalyst was used to study the effect of temperature at three different temperatures of 458, 473 and 493 K. Some of the spent catalysts were characterised using TGA, SEM and XRD to study coke deposition. The amorphous and organised form of coke was found on the surface of the catalyst. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.
Resumo:
Plant litter and fine roots are important in maintaining soil organic carbon (C) levels as well as for nutrient cycling. The decomposition of surface-placed litter and fine roots of wheat ( Triticum aestivum ), lucerne ( Medicago sativa ), buffel grass ( Cenchrus ciliaris ), and mulga ( Acacia aneura ), placed at 10-cm and 30-cm depths, was studied in the field in a Rhodic Paleustalf. After 2 years, = 60% of mulga roots and twigs remained undecomposed. The rate of decomposition varied from 4.2 year -1 for wheat roots to 0.22 year -1 for mulga twigs, which was significantly correlated with the lignin concentration of both tops and roots. Aryl+O-aryl C concentration, as measured by 13 C nuclear magnetic resonance spectroscopy, was also significantly correlated with the decomposition parameters, although with a lower R 2 value than the lignin concentration. Thus, lignin concentration provides a good predictor of litter and fine root decomposition in the field.
Resumo:
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.