11 resultados para user-controlled cloud computing
em University of Queensland eSpace - Australia
Resumo:
A variety of current and future wired and wireless networking technologies can be transformed into a seamless communication environments through application of context-based vertical handovers. Such seamless communication environments are needed for future pervasive/ubiquitous systems. Pervasive systems are context aware and need to adapt to context changes, including network disconnections and changes in network Quality of Service (QoS). Vertical handover is one of many possible adaptation methods. It allows users to roam freely between heterogeneous networks while maintaining the continuity of their applications. This paper proposes a vertical handover mechanism suitable for multimedia applications in pervasive systems. The paper focuses on the handover decision making process which uses context information regarding user devices, user location, network environment and requested QoS. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Typically linear optical quantum computing (LOQC) models assume that all input photons are completely indistinguishable. In practice there will inevitably be nonidealities associated with the photons and the experimental setup which will introduce a degree of distinguishability between photons. We consider a nondeterministic optical controlled-NOT gate, a fundamental LOQC gate, and examine the effect of temporal and spectral distinguishability on its operation. We also consider the effect of utilizing nonideal photon counters, which have finite bandwidth and time response.
Resumo:
Applications that exploit contextual information in order to adapt their behaviour to dynamically changing operating environments and user requirements are increasingly being explored as part of the vision of pervasive or ubiquitous computing. Despite recent advances in infrastructure to support these applications through the acquisition, interpretation and dissemination of context data from sensors, they remain prohibitively difficult to develop and have made little penetration beyond the laboratory. This situation persists largely due to a lack of appropriately high-level abstractions for describing, reasoning about and exploiting context information as a basis for adaptation. In this paper, we present our efforts to address this challenge, focusing on our novel approach involving the use of preference information as a basis for making flexible adaptation decisions. We also discuss our experiences in applying our conceptual and software frameworks for context and preference modelling to a case study involving the development of an adaptive communication application.
Resumo:
Aims: To evaluate efficacy of a pathway-based quality improvement intervention on appropriate prescribing of the low molecular weight heparin, enoxaparin, in patients with varying risk categories of acute coronary syndrome (ACS). Methods: Rates of enoxaparin use retrospectively evaluated before and after pathway implementation at an intervention hospital were compared to concurrent control patients at a control hospital; both were community hospitals in south-east Queensland. The study population was a group of randomly selected patients (n = 439) admitted to study hospitals with a discharge diagnosis of chest pain, angina, or myocardial infarction, and stratified into high, intermediate, low-risk ACS or non-cardiac chest pain: 146 intervention patients (September-November 2003), 147 historical controls (August-December 2001) at the intervention hospital; 146 concurrent controls (September-November 2003) at the control hospital. Interventions were active implementation of a user-modified clinical pathway coupled with an iterative education programme to medical staff versus passive distribution of a similar pathway without user modification or targeted education. Outcome measures were rates of appropriate enoxaparin use in high-risk ACS patients and rates of inappropriate use in intermediate and low-risk patients. Results: Appropriate use of enoxaparin in high-risk ACS patients was above 90% in all patient groups. Inappropriate use of enoxaparin was significantly reduced as a result of pathway use in intermediate risk (9% intervention patients vs 75% historical controls vs 45% concurrent controls) and low-risk patients (9% vs 62% vs 41%; P < 0.001 for all comparisons). Pathway use was associated with a 3.5-fold (95% CI: 1.3-9.1; P = 0.012) increase in appropriate use of enoxaparin across all patient groups. Conclusion: Active implementation of an acute chest pain pathway combined with continuous education reduced inappropriate use of enoxaparin in patients presenting with intermediate or low-risk ACS.
Resumo:
Systems biology is based on computational modelling and simulation of large networks of interacting components. Models may be intended to capture processes, mechanisms, components and interactions at different levels of fidelity. Input data are often large and geographically disperse, and may require the computation to be moved to the data, not vice versa. In addition, complex system-level problems require collaboration across institutions and disciplines. Grid computing can offer robust, scaleable solutions for distributed data, compute and expertise. We illustrate some of the range of computational and data requirements in systems biology with three case studies: one requiring large computation but small data (orthologue mapping in comparative genomics), a second involving complex terabyte data (the Visible Cell project) and a third that is both computationally and data-intensive (simulations at multiple temporal and spatial scales). Authentication, authorisation and audit systems are currently not well scalable and may present bottlenecks for distributed collaboration particularly where outcomes may be commercialised. Challenges remain in providing lightweight standards to facilitate the penetration of robust, scalable grid-type computing into diverse user communities to meet the evolving demands of systems biology.
Resumo:
A major requirement for pervasive systems is to integrate context-awareness to support heterogeneous networks and device technologies and at the same time support application adaptations to suit user activities. However, current infrastructures for pervasive systems are based on centralized architectures which are focused on context support for service adaptations in response to changes in the computing environment or user mobility. In this paper, we propose a hierarchical architecture based on active nodes, which maximizes the computational capabilities of various nodes within the pervasive computing environment, while efficiently gathering and evaluating context information from the user's working environment. The migratable active node architecture employs various decision making processes for evaluating a rich set of context information in order to dynamically allocate active nodes in the working environment, perform application adaptations and predict user mobility. The active node also utilizes the Redundant Positioning System to accurately manage user's mobility. This paper demonstrates the active node capabilities through context-aware vertical handover applications.