4 resultados para unimodal
em University of Queensland eSpace - Australia
Resumo:
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
There are at least two reasons for a symmetric, unimodal, diffuse tailed hyperbolic secant distribution to be interesting in real-life applications. It displays one of the common types of non normality in natural data and is closely related to the logistic and Cauchy distributions that often arise in practice. To test the difference in location between two hyperbolic secant distributions, we develop a simple linear rank test with trigonometric scores. We investigate the small-sample and asymptotic properties of the test statistic and provide tables of the exact null distribution for small sample sizes. We compare the test to the Wilcoxon two-sample test and show that, although the asymptotic powers of the tests are comparable, the present test has certain practical advantages over the Wilcoxon test.
Resumo:
The generalized secant hyperbolic distribution (GSHD) proposed in Vaughan (2002) includes a wide range of unimodal symmetric distributions, with the Cauchy and uniform distributions being the limiting cases, and the logistic and hyperbolic secant distributions being special cases. The current article derives an asymptotically efficient rank estimator of the location parameter of the GSHD and suggests the corresponding one- and two-sample optimal rank tests. The rank estimator derived is compared to the modified MLE of location proposed in Vaughan (2002). By combining these two estimators, a computationally attractive method for constructing an exact confidence interval of the location parameter is developed. The statistical procedures introduced in the current article are illustrated by examples.
Resumo:
This paper presents some initial attempts to mathematically model the dynamics of a continuous estimation of distribution algorithm (EDA) based on a Gaussian distribution and truncation selection. Case studies are conducted on both unimodal and multimodal problems to highlight the effectiveness of the proposed technique and explore some important properties of the EDA. With some general assumptions, we show that, for ID unimodal problems and with the (mu, lambda) scheme: (1). The behaviour of the EDA is dependent only on the general shape of the test function, rather than its specific form; (2). When initialized far from the global optimum, the EDA has a tendency to converge prematurely; (3). Given a certain selection pressure, there is a unique value for the proposed amplification parameter that could help the EDA achieve desirable performance; for ID multimodal problems: (1). The EDA could get stuck with the (mu, lambda) scheme; (2). The EDA will never get stuck with the (mu, lambda) scheme.