6 resultados para uniaxial anisotropy
em University of Queensland eSpace - Australia
Resumo:
The ovine lumbar intervertebral disc is a useful model for the human lumbar disc. We present preliminary estimates of diffusion coefficients and T-2 relaxation times in a pilot MRI study of the ovine lumbar intervertebral disc during uniaxial compression in vitro, and identify factors that hamper the ability to accurately monitor the temporal evolution of the effective diffusion tensor at high spatial resolution.
Resumo:
A novel class of nonlinear, visco-elastic rheologies has recently been developed by MUHLHAUS et al. (2002a, b). The theory was originally developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of the layer surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the so-called director of these surfaces. Here the model (MUHLHAUS et al., 2002a, b) is generalized to include thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then turn to natural convection and compare the time evolution and approximately steady states of isotropic and anisotropic convection for a Rayleigh number Ra=5.64x10(5) for aspect ratios of the experimental domain of 1 and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers, and the number of convection cells which develop appears to be reduced in the orthotropic case. At the moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio one to two in the model domain.
Resumo:
A series of TPU nanocomposites were prepared by incorporating organically modified layered silicates with controlled particle size. To our knowledge, this is the first study into the effects of layered silicate diameter in polymer nanocomposites utilizing the same mineral for each size fraction. The tensile properties of these materials were found to be highly dependent upon the size of the layered silicates. A decrease in disk diameter was associated with a sharp upturn in the stress-strain curve and a pronounced increase in tensile strength. Results from SAXS/SANS experiments showed that the layered silicates did not affect the bulk TPU microphase structure and the morphological response of the host TPU to deformation or promote/hinder strain-induced soft segment crystallization. The improved tensile properties of the nanocomposites containing the smaller nanofillers resulted from the layered silicates aligning in the direction of strain and interacting with the TPU sequences via secondary bonding. This phenomenon contributes predominantly above 400% strain once the microdomain architecture has largely been disassembled. Large tactoids that are unable to align in the strain direction lead to concentrated tensile stresses between the polymer and filler, instead of desirable shear stresses, resulting in void formation and reduced tensile properties. In severe cases, such as that observed for the composite containing the largest silicate, these voids manifest visually as stress whitening.
Resumo:
We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.
Resumo:
The paper presents a new theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of slip planes in the context of crystallographic slip is determined by the normal vector, the so-called director of these surfaces. The model is applied to simulate anisotropic natural mantle convection. We compare the evolution of the director and approximately steady states of isotropic and anisotropic convection. The isotropic case has a simple steady state solution, whereas the orthotropic convection model produces a continuously evolving patterning in tile core of the convection cell which makes only a near-steady condition possible, in which the thermal boundary layer appears to be well aligned with the flow and hence as observed in seismic tomomgraphy strong anistropic.