32 resultados para trunk wood

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies have identified changes in trunk muscle recruitment in clinical low back pain (LBP). However, due to the heterogeneity of the LBP population these changes have been variable and it has been impossible to identify a cause-effect relationship. Several studies have identified a consistent change in the feed-forward postural response of transversus abdominis (TrA), the deepest abdominal muscle, in association with arm movements in chronic LBP. This study aimed to determine whether the feedforward recruitment of the trunk muscles in a postural task could be altered by acute experimentally induced LBP. Electromyographic (EMG) recordings of the abdominal and paraspinal muscles were made during arm movements in a control trial, following the injection of isotonic (non-painful) and hypertonic (painful) saline into the longissimus muscle at L4, and during a 1-h follow-up. Movements included rapid arm flexion in response to a light and repetitive arm flexion-extension. Temporal and spatial EMG parameters were measured. The onset and amplitude of EMG of most muscles was changed in a variable manner during the period of experimentally induced pain. However, across movement trials and subjects the activation of TrA was consistently reduced in amplitude or delayed. Analyses in the time and frequency domain were used to confirm these findings. The results suggest that acute experimentally induced pain may affect feedforward postural activity of the trunk muscles. Although the response was variable, pain produced differential changes in the motor control of the trunk muscles, with consistent impairment of TrA activity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pelvic floor muscles (PFM) are part of the trunk stability mechanism. Their function is interdependent with other muscles of this system. They also contribute to continence, elimination, sexual arousal and intra-abdominal pressure. This paper outlines some aspects of function and dysfunction of the PFM complex and describes the contribution of other trunk muscles to these processes. Muscle pathophysiology of stress urinary incontinence (SUI) is described in detail. The innovative rehabilitation programme for SUI presented here utilizes abdominal muscle action to initiate tonic PFM activity. Abdominal muscle activity is then used in PFM strengthening, motor relearning for functional expiratory actions and finally impact training. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terrestrial biogeography of Gondwana during Jurassic-Early Cretaceous times is poorly resolved, and the flora is usually considered to have been rather uniform. This is surprising given the size of Gondwana, which extended from the equator to the South Pole. Documenting Gondwanan terrestrial floristic provincialism in the Jurassic-Early Cretaceous times is important because it provides a historical biogeographic context in which to understand the tremendous evolutionary radiations that occurred during the mid-Cretaceous. In this paper, the distribution of Jurassic-Early Cretaceous fossil wood is analysed at generic level across the entire supercontinent. Specifically, wood assemblages are analyzed in terms of five climatic zones (summer wet, desert, winter wet, warm temperate, cool temperate) established on the basis of independent data. Results demonstrate that araucarian-like conifer wood was a dominant, cosmopolitan element, whereas other taxa showed a greater degree of provincialism. Indeed, several narrowly endemic morphogenera are recognizable from the data. Finally, comparisons with Laurasian wood assemblages indicate strong parallelism between the vegetation of both hemispheres. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pain changes postural activation of the trunk muscles. The cause of these changes is not known but one possibility relates to the information processing requirements and the stressful nature of pain. This study investigated this possibility by evaluating electromyographic activity (EMG) of the deep and superficial trunk muscles associated with voluntary rapid arm movement. Data were collected from control trials, trials during low back pain (LBP) elicited by injection of hypertonic saline into the back muscles, trials during a non-painful attention-demanding task, and during the same task that was also stressful. Pain did not change the reaction time (RT) of the movement, had variable effects on RT of the superficial trunk muscles, but consistently increased RT of the deepest abdominal muscle. The effect of the attention-demanding task was opposite: increased RT of the movement and the superficial trunk muscles but no effect on RT of the deep trunk muscles. Thus, activation of the deep trunk muscles occurred earlier relative to the movement. When the attention-demanding task was made stressful, the RT of the movement and superficial trunk muscles was unchanged but the RT of the deep trunk muscles was increased. Thus, the temporal relationship between deep trunk muscle activation and arm movement was restored. This means that although postural activation of the deep trunk muscles is not affected when central nervous system resources are limited, it is delayed when the individual is also under stress. However, a non-painful attention-demanding task does not replicate the effect of pain on postural control of the trunk muscles even when the task is stressful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Control of the trunk is critical for locomotor efficiency. However, investigations of trunk muscle activity and three-dimensional lumbo-pelvic kinematics during walking and running remain scarce. Methods. Gait parameters and three-dimensional lumbo-pelvic kinematics were recorded in seven subjects. Electromyography recordings of abdominal and paraspinal muscles were made using fine-wire and surface electrodes as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Findings. Kinematic data indicate that the amplitude but not timing of lumbo-pelvic motion changes with locomotor speed. Conversely, a change in locomotor mode is associated with temporal but not spatial adaptation in neuromotor strategy. That is, peak transverse plane lumbo-pelvic rotation occurs at foot strike during walking but prior to foot strike during running. Despite this temporal change, there is a strong correlation between the amplitude of transverse plane lumbo-pelvic rotation and stride length during walking and running. In addition, Jumbo-pelvic motion was asymmetrical during all locomotor tasks. Trunk muscle electromyography occurred biphasically in association with foot strike. Transversus abdominis was tonically active with biphasic modulation. Consistent with the kinematic data, electromyography activity of the abdominal muscles and the superficial fibres of multifidus increased with locomotor speed, and timing of peak activity of superficial multifidus and obliquus externus abdominis was modified in association with the temporal adaptation in lumbo-pelvic motion with changes in locomotor mode. Interpretation. These data provide evidence of the association between lumbo-pelvic motion and trunk muscle activity during locomotion at different speeds and modes. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the abdominal muscles in trunk rotation is not comprehensively understood. This study investigated the electromyographic (EMG) activity of anatomically distinct regions of the abdominal muscles during trunk rotation in six subjects with no history of spinal pain. Fine-wire electrodes were inserted into the right abdominal wall; upper region of transversus abdominis (TrA), middle region of TrA, obliquus internus abdominis (OI) and obliquus externus abdominis (OE), and lower region of TrA and OI. Surface electrodes were placed over right rectus abdominis (RA). Subjects performed trunk rotation to the left and right in sitting by rotating their pelvis relative to a fixed thorax. EMG activity was recorded in relaxed supine and sitting, and during an isometric hold at end range. TrA was consistently active during trunk rotation, with the recruitment patterns of the upper fascicles opposite to that of the middle and lower fascicles. During left rotation, there was greater activity of the lower and middle regions of contralateral TrA and the lower region of contralateral OI. The upper region of ipsilateral TrA and OE were predominately active during right rotation. In contrast, there was no difference in activity of RA and middle OI between directions (although middle OI was different between directions for all but one subject). This study indicates that TrA is active during trunk rotation, but this activity varies between muscle regions. These normative data will assist in understanding the role of TrA in lumbopelvic control and movement, and the effect of spinal pain on abdominal muscle recruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design. Cross-sectional study. Objective. To develop a technique to measure electromyographic (EMG) activity of deep and superficial paraspinal muscles at different thoracic levels and to investigate activity of these muscles during seated trunk rotation. Summary of Background Data. Few studies have compared activity of deep and superficial paraspinal muscles of the thorax during trunk rotation, and conflicting results have been presented. Conflicting data may result from recording techniques or variation in activity between thoracic regions. Methods. EMG recordings were made from deep (multifidus/ rotatores) and superficial ( longissimus) paraspinal muscles at T5, T8, and T11 using selective intramuscular electrodes. Ten subjects rotated the trunk to end of range in each direction. EMG amplitude was measured in neutral, at end of range, and during four epochs, which represented four quarters of the movement. Results. During trunk rotation in sitting, longissimus EMG either increased with ipsilateral rotation ( T5) or decreased with contralateral rotation ( T5, T8, T11). In contrast, multifidus EMG was more variable and was either active with rotation in both directions ( particularly T5) or with one movement direction. Conclusions. The deep and superficial muscles of the thorax are differentially active, and the patterns of activity differ between the regions of the thorax. Data from this study support the hypothesis that multifidus may have a role in control of segmental motion at T5. Variability in multifidus activity at T8 and T11 suggests that this muscle may also control coupling between rotation and lateral flexion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of studies of tropical tree species that use molecular tools is increasing, most of which collect leaf tissue for genomic DNA extraction. In tropical trees the canopy is not only frequently inaccessible, but also, once reached, the leaf tissue is often heavily defended against herbivory by high concentrations of anti-predation compounds, which may inhibit downstream applications, particularly PCR. Cambium tissue, accessed directly from the tree trunk at ground level, offers a readily accessible resource that is less hampered by the presence of defensive chemicals than leaf tissue. Here we describe a simple method for obtaining tissue from the cambial zone for DNA extraction and test the applicability of the method in a range of tropical tree species. The method was used successfully to extract DNA from 11 species in nine families. A subset of the DNA extracts was tested in more detail and proved to be highly suitable for AFLP analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 7-year-old girl presented with acute vulval erythema and pustules, associated with a petechial eruption in her flexures and over her feet. There was a mild prodromal illness and the patient was afebrile. There were minimal symptoms associated with the rash. Skin and throat swabs were negative and blood examination showed mild neutrophilia and lymphopaenia. Parvovirus B19 IgM was detected on serology and cutaneous features resolved within 4 days. This is a further case of parvovirus B19 infection presenting as a 'bathing trunk' exanthem that has unique dermatologic features, including the presence of pustules and distant petechiae. © 2006 The Australasian College of Dermatologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified UNIQUAC model has been extended to describe and predict the equilibrium relative humidity and moisture content for wood. The method is validated over a range of moisture content from oven-dried state to fiber saturation point, and over a temperature range of 20-70 degrees C. Adjustable parameters and binary interaction parameters of the UNIQUAC model were estimated from experimental data for Caribbean pine and Hoop pine as well as data available in the literature. The two group-interaction parameters for the wood-moisture system were consistent with using function group contributions for H2O, -OH and -CHO. The result reconfirms that the main contributors to water adsorption in cell walls are the hydroxyl groups of the carbohydrates in cellulose and hemicelluloses. This provides some physical insight into the intermolecular force and energy between bound water and the wood material. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytochemical exploration of a wood bark extract from Durio zibethinus afforded two new triterpenoids, namely, methyl 27-O-trans-caffeoylcylicodiscate (1) and methyl 27-O-cis-caffeoylcylicodiscate (2), a new phenolic, 1,2-diarylpropane-3- ol (3), and seven known compounds, fraxidin, eucryphin, boehmenan, threo-carolignan E, (-)-(3R, 4S)-4-hydroxymellein, methyl protocatechuate, and (+)-(R)-de-O-methyllasiodiplodin (4). In addition, chemical analysis of a wood bark extract from Durio kutejensis yielded the new triterpenes 3 beta-O-trans-caffeoyl-2R-hydroxyolean-12-en-28-oic acid (5) and 3 beta-trans-caffeoyl-2R-hydroxytaraxest-12-en-28-oic acid (6) together with four known compounds, maslinic acid, arjunolic acid, 2,6-dimethoxy-p-benzoquinone, and fraxidin. The structures of all compounds were determined on the basis of spectroscopic data.