9 resultados para tropical biodiversity
em University of Queensland eSpace - Australia
Resumo:
It has been suggested that timber plantations could play an important role in the conservation of biodiversity in cleared rainforest landscapes, not only because of their potential to cost-effectively reforest large areas of land, but also because they may provide habitat for rainforest plants and animals. However, this last claim is largely untested. In this study, we surveyed the occurrence of a range of animal taxa in monoculture and mixed species timber plantations and restoration plantings in tropical and subtropical Australia. We used the richness of ‘rainforest-dependent’ taxa (i.e., birds, lizards and mites associated with rainforest habitats) in reforested sites as our measure of their ‘biodiversity value’. We also examined whether the biodiversity value of reforested sites was correlated with habitat attributes, including plant species richness and vegetation structure and, further, whether biodiversity value was affected by the proximity of reforested sites to intact rainforest.
Resumo:
The current scale of deforestation in tropical regions and the large areas of degraded lands now present underscore the urgent need,for interventions to restore biodiversity, ecological functioning, and the supply of goods and ecological services previously used by poor rural communities. Traditional timber plantations have supplied some goods but have made only minor contributions to fulfilling most of these other objectives. New approaches to reforestation are now emerging, with potential for both overcoming forest degradation and addressing rural poverty.
Resumo:
Increasingly, large areas of native tropical forests are being transformed into a mosaic of human dominated land uses with scattered mature remnants and secondary forests. In general, at the end of the land clearing process, the landscape will have two forest components: a stable component of surviving mature forests, and a dynamic component of secondary forests of different ages. As the proportion of mature forests continues to decline, secondary forests play an increasing role in the conservation and restoration of biodiversity. This paper aims to predict and explain spatial and temporal patterns in the age of remnant mature and secondary forests in lowland Colombian landscapes. We analyse the age distributions of forest fragments, using detailed temporal land cover data derived from aerial photographs. Ordinal logistic regression analysis was applied to model the spatial dynamics of mature and secondary forest patches. In particular, the effect of soil fertility, accessibility and auto-correlated neighbourhood terms on forest age and time of isolation of remnant patches was assessed. In heavily transformed landscapes, forests account for approximately 8% of the total landscape area, of which three quarters are comprised of secondary forests. Secondary forest growth adjacent to mature forest patches increases mean patch size and core area, and therefore plays an important ecological role in maintaining landscape structure. The regression models show that forest age is positively associated with the amount of neighbouring forest, and negatively associated with the amount of neighbouring secondary vegetation, so the older the forest is the less secondary vegetation there is adjacent to it. Accessibility and soil fertility also have a negative but variable influence on the age of forest remnants. The probability of future clearing if current conditions hold is higher for regenerated than mature forests. The challenge of biodiversity conservation and restoration in dynamic and spatially heterogeneous landscape mosaics composed of mature and secondary forests is discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Tropical deforestation is the major contemporary threat to global biodiversity, because a diminishing extent of tropical forests supports the majority of the Earth's biodiversity. Forest clearing is often spatially concentrated in regions where human land use pressures, either planned or unplanned, increase the likelihood of deforestation. However, it is not a random process, but often moves in waves originating from settled areas. We investigate the spatial dynamics of land cover change in a tropical deforestation hotspot in the Colombian Amazon. We apply a forest cover zoning approach which permitted: calculation of colonization speed; comparative spatial analysis of patterns of deforestation and regeneration; analysis of spatial patterns of mature and recently regenerated forests; and the identification of local-level hotspots experiencing the fastest deforestation or regeneration. The colonization frontline moved at an average of 0.84 km yr(-1) from 1989 to 2002, resulting in the clearing of 3400 ha yr(-1) of forests beyond the 90% forest cover line. The dynamics of forest clearing varied across the colonization front according to the amount of forest in the landscape, but was spatially concentrated in well-defined 'local hotspots' of deforestation and forest regeneration. Behind the deforestation front, the transformed landscape mosaic is composed of cropping and grazing lands interspersed with mature forest fragments and patches of recently regenerated forests. We discuss the implications of the patterns of forest loss and fragmentation for biodiversity conservation within a framework of dynamic conservation planning.
Resumo:
Expansion of planted forests and intensification of their management has raised concerns among forest managers and the public over the implications of these trends for sustainable production and conservation of forest biological diversity. We review the current state of knowledge on the impacts of plantation forestry on genetic and species diversity at different spatial scales and discuss the economic and ecological implications of biodiversity management within plantation stands and landscapes. Managing plantations to produce goods such as timber while also enhancing ecological services such as biodiversity involves tradeoffs, which can be made only with a clear understanding of the ecological context of plantations in the broader landscape and agreement among stakeholders on the desired balance of goods and ecological services from plantations.
Resumo:
Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Species extinctions and the deterioration of other biodiversity features worldwide have led to the adoption of systematic conservation planning in many regions of the world. As a consequence, various software tools for conservation planning have been developed over the past twenty years. These, tools implement algorithms designed to identify conservation area networks for the representation and persistence of biodiversity features. Budgetary, ethical, and other sociopolitical constraints dictate that the prioritized sites represent biodiversity with minimum impact on human interests. Planning tools are typically also used to satisfy these criteria. This chapter reviews both the concepts and technical choices that underlie the development of these tools. Conservation planning problems can be formulated as optimization problems, and we evaluate the suitability of different algorithms for their solution. Finally, we also review some key issues associated with the use of these tools, such as computational efficiency, the effectiveness of taxa and abiotic parameters at choosing surrogates for biodiversity, the process of setting explicit targets of representation for biodiversity surrogates, and