27 resultados para tree species richness and composition
em University of Queensland eSpace - Australia
Resumo:
Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The thelastomatoid fauna of two species of wood-burrowing cockroach (Blattodea, Blaberidae), Panesthia cribrata and Panesthia tryoni tryoni, from Lamington National Park, Australia, is described. The following eight new species and three new genera of thelastomatid are proposed: Bilobostoma exerovulva n. g., n. sp.; Cordonicola gibsoni n. sp.; Coronostoma australiae n. sp.; Desmicola ornata n. sp.; Hammerschmidtiella hochi n. sp.; Malaspinanema goateri n. g., n. sp.; Travassosinema jaidenae n. sp.; and Tsuganema cribratum n. g., n. sp. Additional data are given for Blattophila sphaerolaima and Leidynemella fusiformis. Of the 11 species reported, nine were found in P. cribrata and ten in P. tryoni tryoni. Such levels of thelastomatoid species richnessness in single host species are exceptional. Only the mole cricket, Gryllotalpa africana (23), and the domestic cockroach, Periplaneta americana (20), have higher reported richness. Three species, T jaidenae, C. australiae and D. ornata, were found either exclusively or significantly more prevalently in P tryoni tryoni than in R cribrata. Species of Travassosinema, Coronostoma and Desmicola have been found previously only in millipedes (Diplopoda), a fact that suggests that there is a greater degree of niche overlap between R tryoni tryoni and millipedes than for R cribrata.
Resumo:
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.
Resumo:
The parasite community of animals is generally influenced by host physiology, ecology, and phylogeny. Therefore, sympatric and phylogenetically related hosts with similar ecologies should have similar parasite communities. To test this hypothesis we surveyed the endoparasites of 5 closely related cheilinine fishes (Labridae) from the Great Barrier Reef. They were Cheilinus chlorounts, C. trilobatus, C. fasciatils, Epibulus insidiator and OxYcheilinus diagrainnia. VVe examined the relationship between parasitological variables (richness, abundance and diversity) and host characteristics (bodv weight, diet and phuylogeny). The 5 fishes had 31 parasite species with 9-18 parasite species per fish species. Cestode larvae (mostly Tetraphyllidea) were the most abundant and prevalent parasites followed by nematodes and digeneans. Parasites, body size and diet of hosts differed between fish species. In general, body weight, diet and host phylogeny each explained some of the variation in richness and composition of parasites among the fishes. The 2 most closely related species, Cheilinus chlorourus and C. trilobatus, had broadly similar parasites but the Other fish species differed significantly in all variables. However, there was no all -encompassing pattern. This may, be because different lineages of parasites may react differently to ecological variables. We also argue that adult parasites may respond principally to host diet. In contrast, larval parasite composition may respond both to host diet and predator-prey interactions because this is the path by which many, parasites complete their life-cycles. Finally, variation in parasite phylogeny and parasite life-cycles among hosts likely increase the complexity of the system making it difficult to find all-encompassing patterns between host characteristics and parasites, particularly when all the species in rich parasite communities are considered.
Resumo:
Predatory mites (Acari: Mesostigmata) on tree trunks without significant epiphytic growth in a subtropical rainforest in Eastern Australia were assessed for habitat specificity (i.e. whether they are tree trunk specialists or occupying other habitats) and the influence of host tree and bark structure on their abundance, species richness and species composition. The trunks of nine tree species from eight plant families representing smooth, intermediate and rough bark textures were sampled using a knockdown insecticide spray. In total, 12 species or morphospecies of Mesostigmata (excluding Uropodina sensu stricto) were collected, most of which are undescribed. Comparison with collections from other habitats indicates that epicorticolous Mesostigmata are mainly represented by suspended soil dwellers (six species), secondarily by generalists (four species) and a bark specialist (one species). A typical ground-dwelling species was also found but was represented only by a single individual. In terms of abundance, 50.5% of individuals were suspended soil dwellers, 40.7% bark specialists, and 8.3% generalists. Host species and bark roughness had no significant effect on abundance or species richness. Furthermore, there was no clear effect on species composition. The distribution of the most frequently encountered species suggests that most mesostigmatid mites living on bark use many or most rainforest tree species, independent of bark roughness. These findings support the hypothesis that some epicorticolous Mesostigmata use tree trunks as 'highways' for dispersing between habitat patches, while others use it as a permanent habitat.
Resumo:
Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.
Resumo:
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.
Resumo:
Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.
Resumo:
Fires are integral to the healthy functioning of most ecosystems and are often poorly understood in policy and management, however, the relationship between floristic composition and habitat structure is intrinsically linked, particularly after fire. The aim of this study was to test whether the variability of habitat structure or floristic composition and abundance in forests at a regional scale can be explained in terms of fire frequency using historical data and experimental prescribed burns. We tested this hypothesis in open eucalypt forests of Fraser Island off the east coast of Australia. Fraser Island dunes show progressive stages in plant succession as access to nutrients decreases across the Island. We found that fire frequency was not a good predictor of floristic composition or abundance across dune systems; rather, its affects were dune specific. In contrast, habitat structure was strongly influenced by fire frequency, independent of dune system. A dense understorey occurred in frequently burnt areas, whereas infrequently burnt areas had a more even distribution of plant heights. Plant communities returned to pre-burn levels of composition and abundances within 6 months of a fire and frequently burnt areas were dominated by early successional species of plant. These ecosystems were characterized by low diversity and frequently burnt areas on the east coast were dominated by Pteridium. Greater midstorey canopy cover in low frequency areas reduces light penetration and allows other species to compete more effectively with Pteridium. Our results strongly indicate that frequent fires on the Island have resulted in a decrease in relative diversity through dominance of several species. Prescribed fire represents a powerful management tool to shape habitat structure and complexity of Fraser Island forests.
Resumo:
In Australia, metal-contaminated sites, including those with elevated levels of copper (Cu), are frequently revegetated with endemic plants. Little is known about the responses of Australian plants to excess Cu. Acacia holosericea, Eucalyptus crebra, Eucalyptus camaldulensis, and Melaleuca leucadendra were grown in solution culture with six Cu treatments (0.1 to 40 mu M). While A. holosericea was the most tolerant to excess Cu, all of the species tested were sensitive to excess Cu when compared with exotic tree and agricultural species. The critical external concentrations for toxicity were < 0.7 mu M for all species tested. There was little differentiation between shoot-tissue Cu concentrations in normal versus treated plants, thus, the derivation of critical shoot concentrations was possible only for the most tolerant species, A. holosericea. Critical root Cu concentrations were approximately 210 mu g g(-1) (A. holosericea), 150 mu g g(-1) (E. crebra), 25 mu g g(-1) (E. camaldulensis), and 165 mu g g(-1) (M. leucadendra). These results provide the first comprehensive combination of growth responses, critical concentrations, and toxicity symptoms for three important Australian genera for use in the management of Cu-contaminated sites.
Resumo:
The performance of 32 tropical rainforest and eucalypt tree species grown in private, mixed species plantations was examined. There were two objectives: 1) to summarise the growth of species by soil and rainfall classes, 2) to investigate the degree of variability in growth rates with respect to environmental variables. Data were collected from 112 plots established in the Community Rainforest Reforestation Program (CRRP) plantations across sites in the humid tropics of central and north Queensland. Sites ranged from sea level to 1160 m above sea level, with annual rainfall from 800 mm to 4300 mm, on soils derived from basalt, metamorphic and granite parent material. Species performance was significantly related to climatic and edaphic variables but the strength of these relationships differed among taxa.
Resumo:
Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.