31 resultados para transversely isotropic material
em University of Queensland eSpace - Australia
Resumo:
Ligaments undergo finite strain displaying hyperelastic behaviour as the initially tangled fibrils present straighten out, combined with viscoelastic behaviour (strain rate sensitivity). In the present study the anterior cruciate ligament of the human knee joint is modelled in three dimensions to gain an understanding of the stress distribution over the ligament due to motion imposed on the ends, determined from experimental studies. A three dimensional, finite strain material model of ligaments has recently been proposed by Pioletti in Ref. [2]. It is attractive as it separates out elastic stress from that due to the present strain rate and that due to the past history of deformation. However, it treats the ligament as isotropic and incompressible. While the second assumption is reasonable, the first is clearly untrue. In the present study an alternative model of the elastic behaviour due to Bonet and Burton (Ref. [4]) is generalized. Bonet and Burton consider finite strain with constant modulii for the fibres and for the matrix of a transversely isotropic composite. In the present work, the fibre modulus is first made to increase exponentially from zero with an invariant that provides a measure of the stretch in the fibre direction. At 12% strain in the fibre direction, a new reference state is then adopted, after which the material modulus is made constant, as in Bonet and Burton's model. The strain rate dependence can be added, either using Pioletti's isotropic approximation, or by making the effect depend on the strain rate in the fibre direction only. A solid model of a ligament is constructed, based on experimentally measured sections, and the deformation predicted using explicit integration in time. This approach simplifies the coding of the material model, but has a limitation due to the detrimental effect on stability of integration of the substantial damping implied by the nonlinear dependence of stress on strain rate. At present, an artificially high density is being used to provide stability, while the dynamics are being removed from the solution using artificial viscosity. The result is a quasi-static solution incorporating the effect of strain rate. Alternate approaches to material modelling and integration are discussed, that may result in a better model.
Resumo:
Based on Reddy's third-order theory, the first-order theory and the classical theory, exact explicit eigenvalues are found for compression buckling, thermal buckling and vibration of laminated plates via analogy with membrane vibration, These results apply to symmetrically laminated composite plates with transversely isotropic laminae and simply supported polygonal edges, Comprehensive consideration of a Winkler-Pasternak elastic foundation, a hydrostatic inplane force, an initial temperature increment and rotary inertias is incorporated. Bridged by the vibrating membrane, exact correspondences are readily established between any pairs of buckling and vibration eigenvalues associated with different theories. Positive definiteness of the critical hydrostatic pressure at buckling, the thermobukling temperature increment and, in the range of either tension loading or compression loading prior to occurrence of buckling, the natural vibration frequency is proved. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.
Resumo:
A simplified model for anisotropic mantle convection based on a novel class of rheologies, originally developed for folding instabilities in multilayered rock (MUHLHAUS et al., 2002), is extended ¨ through the introduction of a thermal anisotropy dependent on the local layering. To examine the effect of the thermal anisotropy on the evolution of mantle material, a parallel implementation of this model was undertaken using the Escript modelling toolkit and the Finley finite-element computational kernel (DAVIES et al., 2004). For the cases studied, there appears too little if any effect. For comparative purposes, the effects of anisotropic shear viscosity and the introduced thermal anisotropy are also presented. These results contribute to the characterization of viscous anisotropic mantle convection subject to variation in thermal conductivities and shear viscosities.
Resumo:
A finite element model (FEM) of the cell-compression experiment has been developed in dimensionless form to extract the fundamental cell-wall-material properties (i.e. the constitutive equation and its parameters) from experiment force-displacement data. The FEM simulates the compression of a thin-walled, liquid-filled sphere between two flat surfaces. The cell-wall was taken to be permeable and the FEM therefore accounts for volume loss during compression. Previous models assume an impermeable wall and hence a conserved cell volume during compression. A parametric study was conducted for structural parameters representative of yeast. It was shown that the common approach of assuming reasonable values for unmeasured parameters (e.g. cell-wall thickness, initial radial stretch) can give rise to nonunique solutions for both the form and constants in the cell-wall constitutive relationship. Similarly, measurement errors can also lead to an incorrectly defined cell-wall constitutive relationship. Unique determination of the fundamental wall properties by cell compression requires accurate and precise measurement of a minimum set of parameters (initial cell radius, initial cell-wall thickness, and the volume loss during compression). In the absence of such measurements the derived constitutive relationship may be in considerable error, and should be evaluated against its ability to predict the outcome of other mechanical experiments. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
In the preceding paper (Part I) force-deformation data were measured with the compression experiment in conjunction with the initial radial stretch ratio and the initial wall-thickness to cell-radius ratio for baker's yeast (Saccharomyces cerevisiae). In this paper, these data have been analysed with the mechanical model of Smith et al. (Smith, Moxham & Middelberg (1998) Chemical Engineering Science, 53, 3913-3922) with the wall constitutive behaviour defined a priori as incompressible and linear-elastic. This analysis determined the mean Young's modulus ((E) over bar), mean maximum von Mises stress-at-failure (<(sigma)over bar>(VM,f)) and mean maximum von Mises strain-at failure (<(epsilon)over bar>(VM,f)) to be (E) over bar = 150 +/- 15 MPa, <(sigma)over bar>(VM,f) = 70 +/- 4 MPa and <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08, respectively. The mean Young's modulus was not dependent (P greater than or equal to 0.05) on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting the incompressible linear-elastic relationship is representative of the actual cell-wall constitutive behaviour. Hydraulic conductivities were also determined and were comparable to other similar cell types (0-2.5 mu m/MPa s). The hydraulic conductivity distribution was not dependent on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting inclusion of cell-wall permeability in the mechanical model is justified. <(epsilon)over bar>(VM,f) was independent of cell diameter and to a first-approximation unaffected (P greater than or equal to 0.01) by external osmotic pressure and compression rate, thus providing a reasonable failure criterion. This criterion states that the cell-wall material will break when the strain exceeds <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08. Variability in overall cell strength during compression was shown to be primarily due to biological variability in the maximum von Mises strain-at-failure. These data represent the first estimates of cell-wall material properties for yeast and the first fundamental analysis of cell-compression data. They are essential for describing cell-disruption at the fundamental level of fluid-cell interactions in general bioprocesses. They also provide valuable new measurements for yeast-cell physiologists. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate barotropic perfect fluid cosmologies which admit an isotropic singularity. From the General Vorticity Result of Scott, it is known that these cosmologies must be irrotational. In this paper we prove, using two different methods, that if we make the additional assumption that the perfect fluid is shear-free, then the fluid flow must be geodesic. This then implies that the only shear-free, barotropic, perfect fluid cosmologies which admit an isotropic singularity are the FRW models.
Resumo:
Objective rheological assessment of fluids given to dysphagic patients at mealtime and during videofluoroscopy was carried out using a multicenter format. Thin, quarter-thick, half-thick and full-thick fluids were examined for the degree of correlation between mealtime fluids and their allegedly matched videofluoroscopy counterparts. The study was carried out to determine whether perceived subjective differences between mealtime fluids and videofluoroscopy fluids could be quantified using the rheological parameters of viscosity, density, and yield stress. The results showed poor correlation between mealtime fluids and videofluoroscopy fluids over all parameters. In general, the videofluoroscopy fluids were more viscous, more dense, and showed higher yield stress values than their mealtime counterparts. Given these results, it is reasonable to assume that the fluids used during videofluoroscopy do not provide an accurate indication of swallowing ability at mealtime. Therefore, it is suggested that clinicians use objective methods to theologically match videofluoroscopy fluids to mealtime fluids.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Mesoporous Mobil catalytic materials of number 41 (MCM-41) silica was chemically modified using both inorganic and organic precursors and characterized using the techniques, XRD, XPS, MAS NMR, FTIR, W-Vis, and physical adsorption of nitrogen, hydrocarbons (hexane, benzene, acetone, and methanol) and water vapor. Modification using organic reagents was found to result in a significant loss in porosity and a shape change of surface properties (increased hydrophobicity and decreased acidity). With inorganic modifying reagents, the decrease in porosity was also observed while the surface properties were not significantly altered as reflected by the adsorption isotherms of organics and water vapors. Chemical modifications can greatly improve the hydrothermal stability of MCM-41 material because of the enhanced surface hydrophobicity (with organic modifiers) or increased pore wall thickness (with inorganic modifiers). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a gamma-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.