3 resultados para transverse shear

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is devoted to modeling elastic behavior of laminated composite shells, with special emphasis on incorporating interfacial imperfection. The conditions of imposing traction continuity and displacement jump across each interface are used to model imperfect interfaces. Vanishing transverse shear stresses on two free surfaces of a shell eliminate the need for shear correction factors. A linear theory underlying elastostatics and kinetics of laminated composite shells in a general configuration is presented from Hamilton's principle. In the special case of vanishing interfacial parameters, this theory reduces to the conventional third-order zigzag theory for perfectly bonded laminated shells. Numerical results for bending and vibration problems of laminated circular cylindrical panels are tabulated and plotted to indicate the influence of the interfacial imperfection. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports a free vibration analysis of thick plates with rounded corners subject to a free, simply-supported or clamped boundary condition. The plate perimeter is defined by a super elliptic function with a power defining the shape ranging from an ellipse to a rectangle. To incorporate transverse shear deformation, the Reddy third-order plate theory is employed. The energy integrals incorporating shear deformation and rotary inertia are formulated and the p-Ritz procedures are used to derive the governing eigenvalue equation. Numerical examples for plates with different shapes and boundary conditions are solved and their frequency parameters, where possible, are compared with known results. Parametric studies are carried out to show the sensitivities of frequency parameters by varying the geometry, fibre stacking sequence, and boundary condition. (C) 1999 Academic Press.