6 resultados para total phenolic contents
em University of Queensland eSpace - Australia
Resumo:
Seven phenolic acids related to the botanical origins of nine monofloral Eucalyptus honeys from Australia, along with two abscisic isomers, have been analyzed. The mean content of total phenolic acids ranges from 2.14 mg/100 g honey of black box (Eucalyptus largiflorens) honey to 10.3 mg/100 g honey of bloodwood (Eucalyptus intermedia) honey, confirming an early finding that species-specific differences of phytochemical compositions occur quantitatively among these Eucalyptus honeys. A common profile of phenolic acids, comprising gallic, chlorogenic, coumaric and caffeic acids, can be found in all the Eucalyptus honeys, which could be floral markers for Australian Eucalyptus honeys. Thus, the analysis of phenolic acids could also be used as an objective method for the authentication of botanical origin of Eucalyptus honeys. Moreover, all the honey samples analyzed in this study contain gallic acid as the main phenolic acid, except for stringybox (Eucalyptus globoidia) honey which has ellagic acid as the main phenolic acid. This result indicates that the species-specific differences can also be found in the honey profiles of phenolic acids. Further-more, the analysis of abscisic acid in honey shows that the content of abscisic acid varies from 0.55 mg/100 g honey of black box honey to 4.68 mg/ 100 g honey of bloodwood honey, corresponding to the contents of phenolic acids measured in these honeys. These results have further revealed that the HPLC analysis of honey phytochemical constituents could be used individually and/or jointly for the authentication of the botanical origins of Australian Eucalyptus honeys. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Eight phenolic acids and two abscisic acid isomers in Australian honeys from five botanical species (Melaleuca, Guioa, Lophostemon, Banksia and Helianthus) have been analyzed in relation to their botanical origins. Total phenolic acids present in these honeys range from 2.13 mg/100 g sunflower (Helianthus annuus) honey to 12.11 mg/100 g tea tree (Melaleuca quinquenervia) honey, with amounts of individual acids being various. Tea tree honey shows a phenolic profile of gallic, ellagic, chlorogenic and coumaric acids, which is similar to the phenolic profile of an Australian Eucalyptus honey (bloodwood or Eucalyptus intermedia honey). The main difference between tea tree and bloodwood honeys is the contribution of chlorogenic acid to their total phenolic profiles. In Australian crow ash (Guioa semiglauca) honey, a characteristic phenolic profile mainly consisting of gallic acid and abscisic acid could be used as the floral marker. In brush box (Lophostemon conferta) honey, the phenolic profile, comprising mainly gallic acid and ellagic acid, could be used to differentiate this honey not only from the other Australian non-Eucalyptus honeys but also from a Eucalyptus honey (yellow box or Eucalyptus melliodora honey). However, this Eucalyptus honey could not be differentiated from brush box honey based only on their flavonoid profiles. Similarly, the phenolic profile of heath (Banksia ericifolia) honey, comprising mainly gallic acid, an unknown phenolic acid (Phl) and coumaric acid, could also be used to differentiate this honey from tea tree and bloodwood honeys, which have similar flavonoid profiles. Coumaric acid is a principal phenolic acid in Australian sunflower honey and it could thus be used together with gallic acid for the authentication. These results show that the HPLC analysis of phenolic acids and abscisic acids in Australian floral honeys Could assist the differentiation and authentication of the honeys. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
A total of 160 samples of 20 Australian-sourced feed ingredients of plant origin for pigs and poultry was analysed for total phosphorus and phytate-phosphorus contents and endogenous phytase activity. The majority of total P was present as phytate-phosphorus, and these concentrations were significantly correlated in 9 feed ingredients. The endogenous phytase activity in tested feed ingredients was negligible other than for wheat, its by-products and barley. Phytate-phosphorus was determined by a standard 'ferric chloride precipitation' method, which was satisfactory for individual feed ingredients, with the exception of lupins and faba beans. It appears that phytate is more difficult to extract from these two feedstuffs, possibly because of the affinity of phytate for protein. Ferric chloride precipitation methods are not suitable for phytate-phosphorus determinations of complete feed samples containing other sources of phosphorus, which is a distinct limitation. A lesser limitation is that these methods cannot distinguish between the various esters of myo-inositol phosphate present. Given the variation of phytate contents within ingredients, particularly wheat, the desirability of determining dietary substrate levels is emphasised to take full advantage of including exogenous phytases in pig and poultry diets to reduce phosphorus excretion and abate phosphorus pollution.
Resumo:
Phenolic compounds constitute 50-70% of tea water extract and are the main quality parameters for teas. Theaflavins (TF), thearubigins (TR) and theabrownins (TB) are the major polyphenols that determine the quality of black tea. These compounds were measured in 56 leaf teas and teabags sampled from Australian supermarkets in Queensland. The various quantities of TF, ranging from 0.29% to 1.25%, indicate a quality difference that exists among the teas studied. Low TF content in black tea may be due to over-fermenting and/or long periods of storage. The solubility of TR and TB from teabags ranged from 82% to 92%, indicating that the permeability of teabags was variable. Variable quantities of TF in Australian teas show instability and a tendency of TF to oxidize during storage. Total polyphenols in green teas ranged from 14% to 34%, indicating a large variation, which was not reflected in price. The solubility of total polyphenols from teabags has been proposed as a useful quality index of the filtering paper used for the teabags. This chemical analysis of phenolic compounds in commercial teas may be a potential tool for the quality control of Australian manufactured and imported teas in Australian markets. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Reliable values of total and digestible tryptophan in components of feed formulation matrices are needed because tryptophan is often the third limiting amino acid in practical poultry diets. However, tryptophan is oxidatively destroyed during acid hydrolysis in routine amino acid analysis and its determination requires a separate analytical procedure. The variability in contents and apparent ileal digestibility for 6-week-old broiler chickens of tryptophan in 74 samples representing 24 feedstuffs are presented in this paper. The average ileal tryptophan digestibility coefficient in wheat was 0.83, in sorghum and triticale 0.75, maize 0.71, soybean meal 0.84, sunflower meal 0.81, canola meal 0.78 and cottonseed meal 0.75. Among the grain legumes, tryptophan in lupins was better digested than that in chickpeas, fababeans and field peas. Among the animal protein meals, the tryptophan digestibility coefficients in fish meal (0.77) and blood meal (0.84) were substantially higher than those in meat meal (0.64), meat-and-bone meal (0.63) and feather meal (0.52). Marked variations in tryptophan digestibility were also observed among samples of fish meal, meat-and-bone meal and meat meal, highlighting significant batch-to-batch differences. For most feedstuffs, considerable variability was observed in the tryptophan concentrations, but such variations were not reflected in digestibility coefficients. (c) 2006 Society of Chemical Industry.
Resumo:
Seasonal variations of phenolic compounds in fresh tea shoots grown in Australia were studied using an HPLC method. Three principal tea flavanols [epigallocatechin gallate (EGCG), epicatechin gallate (ECG), and epigallocatechin (EGC)] and four grouped phenolics [total catechins (Cs), total catechin gallates (CGs), total flavanols (Fla), and total polyphenols (PPs)] in fresh tea shoots were analyzed and compared during the commercial harvest seasons from April 2000 to May 2001. The levels of EGCG, ECG, and CGs in the fresh tea shoots were higher in the warm months of April 2000 (120.52, 34.50, and 163.75 mg/g, respectively) and May 2000 (128.63, 44.26, and 183.83 mg/g, respectively) and lower during the cool months of July 2000 (91.39, 35.16, and 132.30 mg/g, respectively), August 2000 (91.31, 31.56, and 128.64 mg/g, respectively), and September 2000 (96.12, 33.51, and 136.90 mg/g, respectively). Thereafter, the levels increased throughout the warmer months from October to December 2000 and remained high until May 2001. In the warmer months, the levels of EGCG, ECG, and CGs were in most cases significantly higher (P < 0.05) than those in the samples harvested in the cooler months. In contrast, the levels of EGC and Cs were high and consistent in the cooler months and low in the warmer months. The seasonal variations of the individual and grouped catechins were significant (P < 0.05) between the cooler and warmer months. This study revealed that EGCG and ECG could be used as quality descriptors for monitoring the seasonal variations of phenolics in Australia-grown tea leaves, and the ratio (EGCG + ECG)/EGC has been suggested as a quality index for measuring the differences in flavanol levels in fresh tea shoots across the growing seasons. Mechanisms that induce seasonal variations in tea shoots may include one or all three of the following environmental conditions: day length, sunlight, and/or temperature, which vary markedly across seasons. Therefore, further studies under controlled conditions such as in a greenhouse may be required to direct correlate flavonoid profiles of green tea leaves with their yields and also to with conditions such as rainfall and humidity.