13 resultados para thiol

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted to investigate physiological mechanisms of solid matrix priming (SMP) on germination enhancement of loblolly pine (Pinus taeda) seeds. During SMP, osmotic potential in the embryo decreased by 0.65 MPa, concentration of crystalloid proteins decreased to 62% and concentrations of buffer soluble proteins and free amino acids increased by 22% and by 166%, respectively. Observations under an electron microscope demonstrated protein bodies in the embryo were mobilized. Inhibitor analysis indicated thiol protease was the dominant enzyme among endopiptidases to degrade the reserved proteins. A fragment of thiol protease was cloned from the primed seed embryos and it has high identities to those thiol proteases responsive to water stress. RNA get blot analysis showed a 1.5 kb thiol protease gene was up-regulated by SMP. Treatment with E64, a thiol protease inhibitor, negated SMP effects on germination performance, water potentials and protein profiles. Based on the experimental results, reserve protein mobilization induced by SMP in the embryo before radicle emergence might be one of the mechanisms to enhance germination in loblolly pine seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By carefully controlling the concentration of alpha,omega-thiol polystyrene in solution, we achieved formation of unique monocyclic polystyrene chains (i.e., polymer chains with only one disulfide linkage). The presence of cyclic polystyrene was confirmed by its lower than expected molecular weight due to a lower hydrodynamic volume and loss of thiol groups as detected by using Ellman's reagent. The alpha,omega-thiol polystyrene was synthesized by polymerizing styrene in the presence of a difunctional RAFT agent and subsequent conversion of the dithioester end groups to thiols via the addition of hexylamine. Oxidation gave either monocyclic polymer chains (i.e., with only one disulfide linkage) or linear multiblock polymers with many disulfide linkages depending on the concentration of polymer used with greater chance of cyclization in more dilute solutions. At high polymer concentrations, linear multiblock polymers were formed. To control the MWD of these linear multiblocks, monofunctional X-PSTY (X = PhCH2C(S)-S-) was added. It was found that the greatest ratio of X-PSTY to X-PSTY-X resulted in a low M-n and PDI. We have shown that we can control both the structure and MWD using this chemistry, but more importantly such disulfide linkages can be readily reduced back to the starting polystyrene with thiol end groups, which has potential use for a recyclable polymer material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Alpha-lipoic acid (ALA) is a thiol compound with antioxidant properties used in the treatment of diabetic polyneuropathy. ALA may also improve arterial function, but there have been scant human trials examining this notion. This project aimed to investigate the effects of oral and intra-arterial ALA on changes in systemic and regional haemodynamics, respectively. Methods In study 1, 16 healthy older men aged 58 +/- 7 years (mean +/- SD) received 600 mg of ALA or placebo, on two occasions 1 week apart, in a randomized cross-over design. Repeated measures of peripheral and central haemodynamics were then obtained for 90 min. Central blood pressure and indices of arterial stiffness [augmentation index (AIx) and estimated aortic pulse wave velocity] were recorded non-invasively using pulse wave analysis. Blood samples obtained pre- and post-treatments were analysed for erythrocyte antioxidant enzyme activity, plasma nitrite and malondialdehyde. In study 2 the effects of incremental cumulative doses (0.5, 1.0, 1.5 and 2.0 mg ml(-1) min(-1)) of intra-arterial ALA on forearm blood flow (FBF) were assessed in eight healthy subjects (aged 31 +/- 5 years) by conventional venous occlusion plethysmography. Results There were no significant changes on any of the central or peripheral haemodynamic measures after either oral or direct arterial administration of ALA. Plasma ALA was detected after oral supplementation (95% confidence intervals 463, 761 ng ml(-1)), but did not alter cellular or plasma measures of oxidative stress. Conclusions Neither oral nor intra-arterial ALA had any effect on regional and systemic haemodynamics or measures of oxidative stress in healthy men.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The psaBCA locus of Streptococcus pneumoniae encodes a putative ABC Mn2+-permease complex. Downstream of the operon is psaD, which may be co-transcribed and encodes a thiol peroxidase. Previously, there has been discordance concerning the phenotypic impact of mutations in the psa locus, resolution of which has been complicated by differences in mutant construction and the possibility of polar effects. Here, we constructed unmarked, in frame deletion mutants DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaD, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD in S. pneumoniae D39 to examine the role of each gene within the locus in Mn2+ uptake, susceptibility to oxidative stress, virulence, nasopharyngeal colonization and chain morphology. The requirement for Mn2+ for growth and transformation was also investigated for all mutants. Inductively coupled plasma mass spectrometry (ICP-MS) analysis provided the first direct evidence that PsaBCA is indeed a Mn2+ transporter. However, this study did not substantiate previous reports that the locus plays a role in choline-binding protein pro-duction or chain morphology. We also confirmed the importance of the Psa permease in systemic virulence and resistance to superoxide and hydrogen peroxide, as well as demonstrating a role in nasopharyngeal colonization for the first time. Further evi-dence is provided to support the requirement for Mn2+ supplementation for growth and transformation of DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD mutants. However, transformation, as well as growth, of the DeltapsaD mutant was not dependent upon Mn2+ supplementation. We also show that, apart from sensitivity to hydrogen peroxide, the DeltapsaD mutant exhibited essentially similar phenotypes to those of the wild type. Western blot analysis with a PsaD antiserum showed that deleting any of the genes upstream of psaD did not affect its expression. However, we found that deleting psaB resulted in decreased expression of PsaA relative to that in D39, whereas deleting both psaB and psaC resulted in at least wild-type levels of PsaA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New tin(IV) complexes of empirical formula, Sn(NNS)I-3 (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. In the solid state, the Schiff bases exist as the thione tautomer but in solution and in the presence of tin(IV) iodide they convert to the thiol tautomer and coordinate to the tin atom in their deprotonated thiolate forms. The structures of the free ligand, Hqaldsbz and its triiodotin(IV) complex, [Sn(qaldsbz)I-3] have been determined by X-ray diffraction. The complex, [Sn(qaldsbz)I-3] has a distorted octahedral structure with the Schiff base coordinated to the tin atom as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The three iodo ligands are coordinated meridionally to the tin atom. The distortion from an ideal octahedral geometry of [Sn(qaldsbz)I-3] is attributed to the restricted bite size of the tridentate Schiff base ligand. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA + cysteine, and HSA + glucose in the ratio similar to50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA + cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S2O3)(2)](3-) resulted in formation of the adducts HSA + Au(S2O3) and HSA + Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S2O3)(2)](3-) blocked the formation of gold adducts. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 The aim was to test the hypothesis that nitric oxide ( NO) donor drugs can inhibit the 5-hydroxytryptamine (5-HT) transporter, SERT. 2 The NO donors, MAHMA/NO ( a NONOate; (Z)-1-[N-methyl-N-[6-(N-methylammoniohexyl)amino]]diazen- 1-ium-1,2-diolate), SIN-1 ( a sydnonimine; 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride), FK409 ( an oxime; (+/-)-(4-ethyl-2E-(hydroxyimino)-5-nitro-3E-hexenamide)) and peroxynitrite, but not Angeli's salt ( source of nitroxyl anion) or sodium nitrite, caused concentration-dependent inhibition of the specific uptake of [H-3]- 5-HT in COS-7 cells expressing human SERT. 3 Superoxide dismutase (150 U ml(-1)) plus catalase ( 1200 U ml(-1)), used to remove superoxide and hence prevent peroxynitrite formation, prevented the inhibitory effect of SIN-1 ( which generates superoxide) but not of MAHMA/NO or FK409. 4 The inhibitory effects of the NO donors were not affected by the free radical scavenger, hydroxocobalamin (1 mM) or the guanylate cyclase inhibitor, ODQ (1H-[ 1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one; 3 muM). 5 L-Cysteine ( 1 mM; source of excess thiol residues) abolished or markedly reduced the inhibitory effects of MAHMA/NO, SIN-1, FK409 and peroxynitrite. 6 It is concluded that inhibition of SERT by the NO donors cannot be attributed exclusively to NO free radical nor to nitroxyl anion. It does not involve guanosine-3',5'-cyclic monophosphate, but may involve nitrosation of cysteine residues on the SERT protein. Peroxynitrite mediates the effect of SIN-1, but not the other drugs. 7 Data in mice with hypoxic pulmonary hypertension suggest that SERT inhibitors may attenuate pulmonary vascular remodelling. Thus, NO donors may be useful in pulmonary hypertension, not only as vasodilators, but also because they inhibit SERT, provided they display this effect in vivo at appropriate doses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full-length cDNA sequence coding for Echinococcus granulosus thioredoxin peroxidase (EgTPx) was isolated from a sheep strain protoscolex cDNA library by immunoscreening using a pool of sera from mice infected with oncospheres. EgTPx expressed as a fusion protein with glutathione S-transferase (GST) exhibited significant thiol-dependent peroxidase activity that protected plasmid DNA from damage by metal-catalyzed oxidation (MCO) in vitro. Furthermore, the suggested antioxidant role for EgTPx was reinforced in an in vivo assay, whereby its expression in BL21 bacterial cells markedly increased the tolerance and survival of the cells to high concentrations of H2O2 compared with controls. Immunolocalization studies revealed that EgTPx was specifically expressed in all tissues of the protoscolex and brood capsules. Higher intensity of labelling was detected in many, but not all, calcareous corpuscle cells in protoscoleces. The purified recombinant EgTPx protein was used to screen sera from heavily infected mice and patients with confirmed hydatid infection. Only a portion of the sera reacted positively with the EgTPx-GST fusion protein in Western blots, suggesting that EgTPx may form antibody-antigen complexes or that responses to the EgTPx antigen may be immunologically regulated. Recombinant EgTPx may prove useful for the screening of specific inhibitors that could serve as new drugs for treatment of hydatid disease. Moreover, given that TPx from different parasitic phyla were phylogenetically distant from host TPx molecules, the development of antiparasite TPx inhibitors that do not react with host TPx might be feasible. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clark 1 (diphenylarsine chloride) and Clark 2 ( diphenylarsine cyanide) were used as chemical weapon agents (CWA), and the soil contamination by these CWA and their degraded products, diphenyl and phenyl arsenicals, has been one of the most serious environmental issues. In a series of comparisons in toxicity between trivalent and pentavalent arsenicals we investigated differences in the accumulation and toxicity of phenylarsine oxide (PAO(3+)) and phenylarsonic acid (PAA(5+)) in rat heart microvascular endothelial cells. Both the cellular association and toxicity of PAO(3+) were much higher than those of PAA(5+), and LC50 values of PAO(3+) and PAA(5+) were calculated to be 0.295 muM and 1.93 mM, respectively. Buthionine sulfoximine, a glutathione depleter, enhanced the cytotoxicity of both PAO(3+) and PAA(5+). N-Acetyl-L-cysteine (NAC) reduced the cytotoxicity and induction of heme oxygenase-1 (HO-1) mRNA in PAO(3+)-exposed cells, while NAC affected neither the cytotoxicity nor the HO-1 mRNA level in PAA(5+)-exposed cells. The effect of NAC may be due to a strong affinity of PAO(3+) to thiol groups because both NAC and GSH inhibited the cellular accumulation of PAO(3+), but PAA(3+) increased tyrosine phosphorylation levels of cellular proteins. These results indicate that the inhibition of protein phosphatases as well as the high affinity to cellular components may confer PAO(3+) the high toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and non-reducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one([ Sec(2,8)] ImI or [Sec(3,12)] ImI), or both([Sec(2,3,8,12)] ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha(7) nicotinic acetylcholine receptor, with each seleno-analogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.