6 resultados para thiobarbituric acid reactive substance
em University of Queensland eSpace - Australia
Resumo:
Although the importance of CD4(+) T cell responses to human cytonnegalovirus (HCMV) has recently been recognized in transplant and immunosuppressed patients, the precise specificity and nature of this response has remained largely unresolved. In the present study we have isolated CD4(+) CTL which recognize epitopes from HCMV glycoproteins gB and gH in association with two different HLA-DR antigens, DRA1*0101/DRB1*0701 (DR7) and DRA1*0101/DRB1*1101 (DR11). Comparison of amino acid sequences of HICMV isolates revealed that the gB and gH epitope sequences recognized by human CD4(+) T cells were not only conserved in clinical isolates from HCMV but also in CMV isolates from higher primates (chimpanzee, rhesus and baboon). Interestingly, these epitope sequences from chimpanzee, rhesus and baboon CMV are efficiently recognized by human CD4(+) CTL. More importantly, we show that gB-specific T cells from humans can also efficiently lyse pepticle-sensitized Patr-DR7(+) cells from chimpanzees. These findings suggest that conserved gB and gH epitopes should be considered while designing a prophylactic vaccine against HCMV. In addition, they also provide a functional basis for the conservation of MHC class 11 lineages between humans and Old World primates and open the possibility for the use of such primate models in vaccine development against HCMV.
Resumo:
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.
Resumo:
Quantifying the relative contribution of different phosphorus (P) sources to P uptake can lead to greater understanding of the mechanisms that increase available P in integrated P management systems. The P-32-P-33 double isotope labeling technique was used to determine the relative contribution of green manures (GMs) and P fertilizers to P uptake by Setaria grass (Setaria sphacelata) grown in an amended tropical acid soil (Bungor series) in a glasshouse study. The amendments were factorial combinations of GMs (Calopogonium caeruleum , Gliricidia sepium and Imperata cylindrica) and P fertilizers [phosphate rocks (PRs) from North Carolina (NCPR), China (CPR) and Algeria (APR), and triple superphosphate (TSP)]. Dry matter yield, P uptake, and P utilization from the amendments were monitored at 4, 8, and 15 weeks after establishment (WAE). The GMs alone or in combination with P fertilizers contributed less than 5% to total P uptake in this soil, but total P uptake into Setaria plants in the GM treatments was three to four times that of the P fertilizers because the GMs mobilized more soil P. Also, the GMs markedly increased fertilizer P utilization in the combined treatments, from 3% to 39% with CPR, from 6-9% to 19-48% with reactive PRs, and from 6% to 37% with TSP in this soil. Both P GM and the other decomposition products were probably involved in reducing soil P-retention capacity. Mobilization of soil P was most likely the result of the action of the other decomposition products. These results demonstrate the high potential of integrating GMs and PRs for managing P in tropical soils and the importance of the soil P mobilization capacity of the organic components. Even the low-quality Imperata GM enhanced the effectiveness of the reactive APR more than fourfold.