4 resultados para thermal treatments

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclotides are a recently discovered class of proteins that have a characteristic head-to-tail cyclized backbone stabilized by a knotted arrangement of three disulfide bonds. They are exceptionally resistant to chemical, enzymatic and thermal treatments because of their unique structural scaffold. Cyclotides have a range of bio-activities, including uterotonic, anti-HIV, anti-bacterial and cytotoxic activity but their insecticidal properties suggest that their natural physiological role is in plant defense. They are genetically encoded as linear precursors and subsequently processed to produce mature cyclic peptides but the mechanism by which this occurs remains unknown. Currently most cyclotides are obtained via direct extraction from plants in the Rubiaceae and Violaceae families. To facilitate the screening of cyclotides for structure-activity studies and to exploit them in drug design or agricultural applications a convenient route for the synthesis of cyclotides is vital. In this review the current chemical, recombinant and biosynthetic routes to the production of cyclotides are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of postcure high energy (gamma), ultraviolet (UV) and thermal treatment on the properties of polyester-melamine clearcoats of a range of compositions has been investigated. Two initial cure conditions were used, of which one was '' optimally '' cured and the other undercured. It was found that postcure treatments, particularly gamma and UV, led to coatings of similar mechanical and thermal properties irrespective of initial cure, although the change in properties on postcure treatment was greater for the under-cured samples. The results were interpreted in terms of the effect of the treatments on the structure of the crosslinked matrices. The study suggests the possibility of the development of a dual-cure process for polyester-melamines, whereby cure optimization and property improvement can be achieved. This could also be used to '' correct '' for small variations in thermal cure levels brought about by adventitious online fluctuations in cure oven conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To survive adverse or unpredictable conditions in the ontogenetic environment, many organisms retain a level of phenotypic plasticity that allows them to meet the challenges of rapidly changing conditions. Larval anurans are widely known for their ability to modify behaviour, morphology and physiological processes during development, making them an ideal model system for studies of environmental effects on phenotypic traits. Although temperature is one of the most important factors influencing the growth, development and metamorphic condition of larval anurans, many studies have failed to include ecologically relevant thermal fluctuations among their treatments. We compared the growth and age at metamorphosis of striped marsh frogs Limnodynastes peronii raised in a diurnally fluctuating thermal regime and a stable regime of the same mean temperature. We then assessed the long-term effects of the larval environment on the morphology and performance of post-metamorphic frogs. Larval L. peronii from the fluctuating treatment were significantly longer throughout development and metamorphosed about 5 days earlier. Frogs from the fluctuating group metamorphosed at a smaller mass and in poorer condition compared with the stable group, and had proportionally shorter legs. Frogs from the fluctuating group showed greater jumping performance at metamorphosis and less degradation in performance during a 10-week dormancy. Treatment differences in performance could not be explained by whole-animal morphological variation, suggesting improved contractile properties of the muscles in the fluctuating group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. We examined the effect of thermal acclimation on fighting success and underlying performance traits in the crayfish Cherax destructor. We tested the hypothesis that animals will be more successful when fighting at their acclimation temperature than at a colder or warmer temperature, and that changes in metabolic capacity underlie differences in behavioural performance. 2. Thermal acclimation (to 20 degrees C and to 30 degrees C) had a significant effect on behavioural contests, and the likelihood of winning was significantly greater when individuals fought at their acclimation temperature against an individual from an alternate acclimation temperature. 3. The ratio of ADP stimulated respiration to proton leak (respiratory control ratio) of isolated mitochondria increased significantly in chelae muscle of the cold-acclimated group, and differences in respiratory control ratio between winners and losers were significantly correlated with the outcome of agonistic encounters. However, acclimation did not affect tall muscle mitochondria or the activity of pyruvate kinase in either chelae or tail muscle. 4. The force produced by closing chelae was thermally insensitive within acclimation groups, and there were no significant differences between acclimation treatments. None the less, differences in chelae width between contestants were significantly correlated with the outcome of agonistic encounters, but this perceived resource holding power did not reflect the actual power of force production. 5. Thermal acclimation in C destructor has beneficial consequences for dominance and competitive ability, and the success of cold acclimated animals at the cold temperatures can be at least partly explained by concomitant up-regulation of oxidative ATP production capacity.