162 resultados para theoretical methods
em University of Queensland eSpace - Australia
Resumo:
Squeezed light is of interest as an example of a non-classical state of the electromagnetic field and because of its applications both in technology and in fundamental quantum physics. This review concentrates on one aspect of squeezed light, namely its application in atomic spectroscopy. The general properties, detection and application of squeezed light are first reviewed. The basic features of the main theoretical methods (master equations, quantum Langevin equations, coupled systems) used to treat squeezed light spectroscopy are then outlined. The physics of squeezed light interactions with atomic systems is dealt with first for the simpler case of two-level atoms and then for the more complex situation of multi-level atoms and multi-atom systems. Finally the specific applications of squeezed light spectroscopy are reviewed.
Resumo:
This study describes a simple method for long-term establishment of human ovarian tumor lines and prediction of T-cell epitopes that could be potentially useful in the generation of tumor-specific cytotoxic T lymphocytes (CTLs), Nine ovarian tumor lines (INT.Ov) were generated from solid primary or metastatic tumors as well as from ascitic fluid, Notably all lines expressed HLA class I, intercellular adhesion molecule-1 (ICAM-1), polymorphic epithelial mucin (PEM) and cytokeratin (CK), but not HLA class II, B7.1 (CD80) or BAGE, While of the 9 lines tested 4 (INT.Ov1, 2, 5 and 6) expressed the folate receptor (FR-alpha) and 6 (INT.Ov1, 2, 5, 6, 7 and 9) expressed the epidermal growth factor receptor (EGFR); MAGE-1 and p185(HER-2/neu) were only found in 2 lines (INT.Ov1 and 2) and GAGE-1 expression in 1 line (INT.Ov2). The identification of class I MHC ligands and T-cell epitopes within protein antigens was achieved by applying several theoretical methods including: 1) similarity or homology searches to MHCPEP; 2) BIMAS and 3) artificial neural network-based predictions of proteins MACE, GAGE, EGFR, p185(HER-2/neu) and FR-alpha expressed in INT.Ov lines, Because of the high frequency of expression of some of these proteins in ovarian cancer and the ability to determine HLA binding peptides efficiently, it is expected that after appropriate screening, a large cohort of ovarian cancer patients may become candidates to receive peptide based vaccines. (C) 1997 Wiley-Liss, Inc.
Resumo:
In this paper, numerical simulations are used in an attempt to find optimal Source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B-1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.
Resumo:
Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson’s disease. Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson’s disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson’s disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups. Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p
Resumo:
I examine a situation where a firm chooses to locate a new factory in one of several jurisdictions. The value of the factory may differ among jurisdictions and it depends on the private information held by each jurisdiction. Jurisdictions compete for the location of the new factory. This competition may take the form of expenditures already incurred on infrastructure, commitments to spend on infrastructure, tax incentives or even cash payments. The model combines two elements that are usually considered separately; competition is desirable because we want the factory to be located in the jurisdiction that values it the most, but competition in itself is wasteful. I show that the expected total amount paid to the firm under a large family of arrangements is the same. Moreover, I show that the ex-ante optimal mechanism that is, the mechanism that guarantees that the firm chooses the jurisdiction with the highest value for the factory, minimizes the total expected payment to the firm, and balances the budget in an ex-ante sense - can be implemented by running a standard auction and subsidizing participation.
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.
Resumo:
A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Qualitative data analysis (QDA) is often a time-consuming and laborious process usually involving the management of large quantities of textual data. Recently developed computer programs offer great advances in the efficiency of the processes of QDA. In this paper we report on an innovative use of a combination of extant computer software technologies to further enhance and simplify QDA. Used in appropriate circumstances, we believe that this innovation greatly enhances the speed with which theoretical and descriptive ideas can be abstracted from rich, complex, and chaotic qualitative data. © 2001 Human Sciences Press, Inc.
Resumo:
There are several competing methods commonly used to solve energy grained master equations describing gas-phase reactive systems. When it comes to selecting an appropriate method for any particular problem, there is little guidance in the literature. In this paper we directly compare several variants of spectral and numerical integration methods from the point of view of computer time required to calculate the solution and the range of temperature and pressure conditions under which the methods are successful. The test case used in the comparison is an important reaction in combustion chemistry and incorporates reversible and irreversible bimolecular reaction steps as well as isomerizations between multiple unimolecular species. While the numerical integration of the ODE with a stiff ODE integrator is not the fastest method overall, it is the fastest method applicable to all conditions.
Resumo:
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.
Resumo:
The C-13 NMR data of five iminopropadienones R-N=C=C=C=O as well as carbon suboxide, C3O2, have been examined theoretically and experimentally. The best theoretical results were obtained using the GIAO/B3LYP/6-31 +G**//MP2/6-31G* level of theory, which reproduces the chemical shifts of the iminopropadienone substituents extremely well while underestimating those of the cumulenic carbons by 5-10 ppm. The computationally faster GIAO/HF/6-31 + G**//B3LYP/6-31 G* level is also adequate. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application relevant to the Fermi sign problem, we calculate finite-temperature properties of the two dimensional Hubbard model and the dynamics in a simple model of coherent molecular dissociation.
Resumo:
Single-phase Ba(Cd1/3Ta2/3)O-3 powder was produced using conventional solid state reaction methods. Ba(Cd1/3Ta2/3)O-3 ceramics with 2 wt % ZnO as sintering additive sintered at 1550 degreesC exhibited a dielectric constant of similar to32 and loss tangent of 5x10(-5) at 2 GHz. X-ray diffraction and thermogravimetric measurements were used to characterize the structural and thermodynamic properties of the material. Ab initio electronic structure calculations were used to give insight into the unusual properties of Ba(Cd1/3Ta2/3)O-3, as well as a similar and more widely used material Ba(Zn1/3Ta2/3)O-3. While both compounds have a hexagonal Bravais lattice, the P321 space group of Ba(Cd1/3Ta2/3)O-3 is reduced from P (3) under bar m1 of Ba(Zn1/3Ta2/3)O-3 as a result of a distortion of oxygen away from the symmetric position between the Ta and Cd ions. Both of the compounds have a conduction band minimum and valence band maximum composed of mostly weakly itinerant Ta 5d and Zn 3d/Cd 4d levels, respectively. The covalent nature of the directional d-electron bonding in these high-Z oxides plays an important role in producing a more rigid lattice with higher melting points and enhanced phonon energies, and is suggested to play an important role in producing materials with a high dielectric constant and low microwave loss. (C) 2005 American Institute of Physics.