8 resultados para théologie trash
em University of Queensland eSpace - Australia
Resumo:
Sugarcane crop residues ('trash') have the potential to supply nitrogen (N) to crops when they are retained on the soil surface after harvest. Farmers should account for the contribution of this N to crop requirements in order to avoid over-fertilisation. In very wet tropical locations, the climate may increase the rate of trash decomposition as well as the amount of N lost from the soil-plant system due to leaching or denitrification. A field experiment was conducted on Hydrosol and Ferrosol soils in the wet tropics of northern Australia using N-15-labelled trash either applied to the soil surface or incorporated. Labelled urea fertiliser was also applied with unlabelled surface trash. The objective of the experiment was to investigate the contribution of trash to crop N nutrition in wet tropical climates, the timing of N mineralisation from trash, and the retention of trash N in contrasting soils. Less than 6% of the N in trash was recovered in the first crop and the recovery was not affected by trash incorporation. Around 6% of the N in fertiliser was also recovered in the first crop, which was less than previously measured in temperate areas (20-40%). Leaf samples taken at the end of the second crop contined 2-3% of N from trash and fertilizer applied at the beginning of the experiment. Although most N was recovered in the 0-1.5 m soil layer there was some evidence of movement of N below this depth. The results showed that trash supplies N slowly and in small amounts to the succeeding crop in wet tropics sugarcane growing areas regardless of trash placement (on the soil surface or incorporated) or soil type, and so N mineralisation from a single trash blanket is not important for sugarcane production in the wet tropics.
Resumo:
Substantial amounts of nitrogen (N) fertiliser are necessary for commercial sugarcane production because of the large biomass produced by sugarcane crops. Since this fertiliser is a substantial input cost and has implications if N is lost to the environment, there are pressing needs to optimise the supply of N to the crops' requirements. The complexity of the N cycle and the strong influence of climate, through its moderation of N transformation processes in the soil and its impact on N uptake by crops, make simulation-based approaches to this N management problem attractive. In this paper we describe the processes to be captured in modelling soil and plant N dynamics in sugarcane systems, and review the capability for modelling these processes. We then illustrate insights gained into improved management of N through simulation-based studies for the issues of crop residue management, irrigation management and greenhouse gas emissions. We conclude by identifying processes not currently represented in the models used for simulating N cycling in sugarcane production systems, and illustrate ways in which these can be partially overcome in the short term. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
There is interest in the use of sugar cane waste biomass for electricity cogeneration, by integrated gasification combined cycle (IGCC) processes. This paper describes one aspect of an overall investigation into the reactivity of cane wastes under pressurized IGGC conditions, for input into process design. There is currently a gap in understanding the morphological transformations experienced by cane waste biomass undergoing conversion to char during pressurized gasification, which is addressed by this work. Char residuals remaining after pressurized pyrolysis and carbon dioxide gasification were analysed by optical microscope, nitrogen (BET) adsorption analysis, SEM/EDS, TEM/EDS and XPS techniques. The amorphous cane plant silica structures were found to remain physically intact during entrained flow gasification, but chemically altered in the presence of other inorganic species. The resulting crystalline silicates were mesoporous (with surface areas of the order of 20 m(2) g(-1)) and contributed to much of the otherwise limited pore volume present in the residual chars. Coke deposition and intimate blending of the carbonaceous and inorganic species was identified. Progressive sintering of the silicates appeared to trap coke deposits in the pore network. As a result ash residuals showed significant organic contents, even after extensive additional oxidation in air. The implications of the findings are that full conversion of cane trash materials under pressurized IGCC conditions may be significantly hampered by the silica structures inherent in these biomass materials and that further research of the contributing phenomena is recommended.
Resumo:
Retention of sugarcane leaves and tops on the soil surface after harvesting has almost completely replaced pre- and post-harvest burning of crop residues in the Australian sugar industry. Since its introduction around 25 years ago, residue retention has increased soil organic matter to improve soil fertility as well as improve harvest flexibility and reduce erosion. However, in the wet tropics residue retention also poses potential problems of prolonged waterlogging, and late-season release of nitrogen which can reduce sugar content of the crop. The objective of this project is to examine the management of sugarcane residues in the wet tropics using a systems approach. Subsidiary objectives are (a) to improve understanding of nitrogen cycling in Australian sugarcane soils in the wet tropics, and (b) to identify ways to manage crop residues to retain their advantages and limit their disadvantages. Project objectives will be addressed using several approaches. Historic farm production data recorded by sugar mills in the wet tropics will be analysed to determine the effect of residue burning or retention on crop yield and sugar content. The impact of climate on soil processes will be highlighed by development of an index of nitrogen mineralisation using the Agricultural Production Systems Simulator (APSIM) model. Increased understanding of nitrogen cycling in Australian sugarcane soils and management of crop residues will be gained through a field experiment recently established in the Australian wet tropics. From this experiment the decomposition and nitrogen dynamics of residues placed on the soil surface and incorporated will be compared. The effect of differences in temperature, soil water content and pH will be further examined on these soils under glasshouse conditions. Preliminary results show a high ammonium to nitrate ratio in tropics soils, which may be due to low rates of nitrification that increase the retention of nitrogen in a form (ammonium) that is less subject to leaching. Further results will be presented at Congress.
Resumo:
Retention of sugarcane leaves and tops on the soil surface after harvesting has almost completely replaced burning of crop residues in the Australian sugar industry. Long term retention of residue is believed to improve soil fertility to the extent that nitrogen (N) fertilizer applications might be reduced by up to 40 kg N/ha/y. However, the fate of N in the extreme environment of the wet tropics is not known with certainty. Indices of potential N mineralisation and nitrification were developed and indicate that potential N fertility is greater in the wet tropics compared to more southern cane growing areas, and is enhanced under residue retention. Field results from the wet tropics support this prediction, but indicate high soil ammonium-N concentrations relative to nitrate-N.