11 resultados para temporal model
em University of Queensland eSpace - Australia
Resumo:
The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AM R. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.
Resumo:
The phenotypic and genetic factor structure of performance on five Multidimensional Aptitude Battery (MAB) subtests and one Wechsler Adult Intelligence Scale-Revised (WAIS-R) subtest was explored in 390 adolescent twin pairs (184 monozygotic [MZ]; 206 dizygotic (DZ)). The temporal stability of these measures was derived from a subsample of 49 twin pairs, with test-retest correlations ranging from .67 to .85. A phenotypic factor model, in which performance and verbal factors were correlated, provided a good fit to the data. Genetic modeling was based on the phenotypic factor structure, but also took into account the additive genetic (A), common environmental (C), and unique environmental (E) parameters derived from a fully saturated ACE model. The best fitting model was characterized by a genetic correlated two-factor structure with specific effects, a general common environmental factor, and overlapping unique environmental effects. Results are compared to multivariate genetic models reported in children and adults, with the most notable difference being the growing importance of common genes influencing diverse abilities in adolescence. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Geospatio-temporal conceptual models provide a mechanism to explicitly represent geospatial and temporal aspects of applications. Such models, which focus on both what and when/where, need to be more expressive than conventional conceptual models (e.g., the ER model), which primarily focus on what is important for a given application. In this study, we view conceptual schema comprehension of geospatio-temporal data semantics in terms of matching the external problem representation (that is, the conceptual schema) to the problem-solving task (that is, syntactic and semantic comprehension tasks), an argument based on the theory of cognitive fit. Our theory suggests that an external problem representation that matches the problem solver's internal task representation will enhance performance, for example, in comprehending such schemas. To assess performance on geospatio-temporal schema comprehension tasks, we conducted a laboratory experiment using two semantically identical conceptual schemas, one of which mapped closely to the internal task representation while the other did not. As expected, we found that the geospatio-temporal conceptual schema that corresponded to the internal representation of the task enhanced the accuracy of schema comprehension; comprehension time was equivalent for both. Cognitive fit between the internal representation of the task and conceptual schemas with geospatio-temporal annotations was, therefore, manifested in accuracy of schema comprehension and not in time for problem solution. Our findings suggest that the annotated schemas facilitate understanding of data semantics represented on the schema.
Resumo:
Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.
Resumo:
High-fidelity eye tracking is combined with a perceptual grouping task to provide insight into the likely mechanisms underlying the compensation of retinal image motion caused by movement of the eyes. The experiments describe the covert detection of minute temporal and spatial offsets incorporated into a test stimulus. Analysis of eye motion on individual trials indicates that the temporal offset sensitivity is actually due to motion of the eye inducing artificial spatial offsets in the briefly presented stimuli. The results have strong implications for two popular models of compensation for fixational eye movements, namely efference copy and image-based models. If an efference copy model is assumed, the results place constraints on the spatial accuracy and source of compensation. If an image-based model is assumed then limitations are placed on the integration time window over which motion estimates are calculated. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we consider how refinements between state-based specifications (e.g., written in Z) can be checked by use of a model checker. Specifically, we are interested in the verification of downward and upward simulations which are the standard approach to verifying refinements in state-based notations. We show how downward and upward simulations can be checked using existing temporal logic model checkers. In particular, we show how the branching time temporal logic CTL can be used to encode the standard simulation conditions. We do this for both a blocking, or guarded, interpretation of operations (often used when specifying reactive systems) as well as the more common non-blocking interpretation of operations used in many state-based specification languages (for modelling sequential systems). The approach is general enough to use with any state-based specification language, and we illustrate how refinements between Z specifications can be checked using the SAL CTL model checker using a small example.
Resumo:
The Symbolic Analysis Laboratory (SAL) is a suite of tools for analysis of state transition systems. Tools supported include a simulator and four temporal logic model checkers. The common input language to these tools was originally developed with translation from other languages, both programming and specification languages, in mind. It is, therefore, a rich language supporting a range of type definitions and expressions. In this paper, we investigate the translation of Z specifications into the SAL language as a means of providing model checking support for Z. This is facilitated by a library of SAL definitions encoding the Z mathematical toolkit.
Resumo:
Experiments with simulators allow psychologists to better understand the causes of human errors and build models of cognitive processes to be used in human reliability assessment (HRA). This paper investigates an approach to task failure analysis based on patterns of behaviour, by contrast to more traditional event-based approaches. It considers, as a case study, a formal model of an air traffic control (ATC) system which incorporates controller behaviour. The cognitive model is formalised in the CSP process algebra. Patterns of behaviour are expressed as temporal logic properties. Then a model-checking technique is used to verify whether the decomposition of the operator's behaviour into patterns is sound and complete with respect to the cognitive model. The decomposition is shown to be incomplete and a new behavioural pattern is identified, which appears to have been overlooked in the analysis of the data provided by the experiments with the simulator. This illustrates how formal analysis of operator models can yield fresh insights into how failures may arise in interactive systems.
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.