5 resultados para tectonic evolution
em University of Queensland eSpace - Australia
Resumo:
Re-Os data for chromite separates from 10 massive chromitite seams sampled along the 550-km length of the 2.58-Ga Great Dyke layered igneous complex, Zimbabwe, record initial 187Os/188Os ratios in the relatively narrow range between 0.1106 and 0.1126. This range of initial 187Os/188Os values is only slightly higher than the value for the coeval primitive upper mantle (0.1107) as modeled from the Re-Os evolution of chondrites and data of modern mantle melts and mantle derived xenoliths. Analyses of Archean granitoid and gneiss samples from the Zimbabwe Craton show extremely low Os concentrations (3-9 ppt) with surprisingly unradiogenic present-day 187Os/188Os signatures between 0.167 and 0.297. Only one sample yields an elevated 187Os/188Os ratio of 1.008. Using these data, the range of crustal contamination of the Great Dyke magma would be minimally 0%-33% if the magma source was the primitive upper mantle, whereas the range estimated from Nd and Pb isotope systematics is 5%-25%. If it is assumed that the primary Great Dyke magma derived from an enriched deep mantle reservoir (via a plume), a better agreement can be obtained. A significant contribution from a long-lived subcontinental lithospheric mantle (SCLM) reservoir with subchondritic Re/Os to the Great Dyke melts cannot be reconciled with the Os isotope results at all. However, Os isotope data on pre-Great Dyke ultramafic complexes of the Zimbabwe Craton and thermal modeling show that such an SCLM existed below the Zimbabwe Craton at the time of the Great Dyke intrusion. It is therefore concluded that large melt volumes such as that giving rise to the Great Dyke were able to pass lithospheric mantle keels without significant contamination in the late Archean. Because the ultramafic-mafic melts forming the Great Dyke must have originated below the SCLM (which extends to at least a 200-km depth ), the absence of an SCLM signature precludes a subduction-related magma-generation process.
Resumo:
Understanding and explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100 km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed ``hydrolytic weakening''. At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.