200 resultados para systemic effects
em University of Queensland eSpace - Australia
Resumo:
Expression of metallothionein, an antioxidant induced by a variety of stimuli including ultraviolet light, was quantitated by immunohistochemistry in the skin of males aged over 50 who had known short- and long-term exposures to sunlight. Skin punch biopsies were taken from two sites in each subject: the hand in all subjects and a range of other sites matched to patients with a previously excised primary melanoma. Metallothionein expression (strongest in the basal layers of the epidermis and primarily nuclear) was associated with both short- and long-term exposure to sunlight. A plateau of staining intensity was reached after 3 h sun exposure, within the previous 3 d before biopsy. Expression was also elevated in the nonexposed skin sites of subjects who had recent sun exposure, indicating a systemic response to exposure of remote sites. Using the skin of the hand to normalize responses to chronic exposure between individuals, the systemically modulated response to sunlight was significantly greater on the unexposed back than on other sites. The possibility of ultraviolet-induced cytokines selectively modifying the response of skin on a site-specific basis was investigated. The circulating leukocytes, but not lymphocytes, of two individuals exposed to 1 minimal erythema dose whole-body solar-simulated ultraviolet showed increased interleukin-6 mRNA 4 h after exposure. Interleukin-6 was not directly induced in these cell populations 4 h after ultraviolet A or ultraviolet B irradiation ex vivo . Leukocytes may therefore contribute to and amplify the systemic effects of ultraviolet-induced interleukin-6 and metallothionein expression.
Resumo:
Overproduction or underregulation of the proinflammatory complement component C5a has been implicated in numerous immune and inflammatory conditions. Therefore, targeting the C5a receptor (C5aR) has become an innovative strategy for antiinflammatory drug development. The novel cyclic peptide C5aR antagonist, AcF-[OP(D-Cha)WR] (PMX53), attenuates injury in numerous animal models of inflammation following intravenous, subcutaneous, intraperitoneal, and oral administration. In the present study the transdermal pharmacology of PMX53 and three analogs designed with increased lipophilicity, hydrocinnamate-[OP(D-Cha)WCit] (PMX200), AcF-[OP(D-Cha)WCit] (PMX201) and hydrocinnamate-[OP(D-Cha)WR] (PMX205), have been examined in order to assess their transdermal permeability and inhibitory effect on C5a-mediated lipopolysaccharide (LPS)-induced systemic responses. In the rat, PMX53, PMX201, and PMX205, were bioavailable following topical dermal administration (10 mg/50 cm(2) site/rat). All analogs functionally antagonized neutropenia and hypotension induced by systemic challenge with LPS (I mg/kg i.v.). Interestingly, PMX200 attenuated LPS-induced neutropenia more effectively than other analogs, despite undetectable (< 5 ng/ml) circulating levels following topical administration. In conclusion, we have demonstrated that cyclic peptide C5aR antagonists can penetrate transdermally sufficiently to have systemic effects. However, increasing lipophilicity in these compounds did not result in increased blood levels. Nonetheless, topical application of C5aR antagonists produced circulating levels of the drugs that antagonized the LPS-induced systemic responses of neutropenia and hypotension. This suggests that these small-molecule C5aR antagonists may be developed for topical administration for the treatment of local and systemic inflammatory conditions in the human and veterinary pharmaceutical markets.
Resumo:
This study investigates a stent-less local delivery system for anti-restenotic agents utilizing antibodies to cross-linked fibrin (XLF). Heparin and low molecular weight heparin (LMWH) were conjugated to an antibody to cross-linked fibrin D-dinner (1D2). Rabbit right carotid arteries were injured with a balloon catheter, then the animals were given a bolus injection of 40 mug/k,g 1D2-heparin (26-70 mug/kg heparin) or 1D2-LMWH (29-80 mug/kg LMWH) conjugates or controls of saline (0.5 ml/kg), heparin (150 U/kg), LMWH (2 mg), or 1D2 (40 mug/kg), with or without a heparin bolus and sacrificed after 2 weeks (8 groups, n = 6/group). The injured artery of rabbits given 1D2-heparin or 1D2-LMWH conjugates had reduced neointimal development, with decreased luminal narrowing and positive remodelling compared with animals given control drugs. Animals given 1D2-heparin conjugate (with a heparin bolus) had three to five times more endothelial cells than the rabbits given saline or unconjugated heparin, while rabbits given 1D2-LMWH conjugate had up to 59% fewer neointimal cells than those given unconjugated drugs. There was little difference in extracellular matrix organization or composition. Thus cross-linked fibrin-antibodies can site-deliver anti-restenotic agents to injured areas of the artery wall where they influence wall remodelling and endothelial and neointimal cell number, reducing neointimal formation without systemic complications. Local delivery of anti-restenotic agents should minimise systemic effects, bleeding complications and potentially the cost of treatment due to a single, lower dose. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The role of T lymphocytes in host responses to sublethal systemic infection with Candida albicans was evaluated by mAb depletion of CD4(+) and CD8(+) cells from BALB/c and CBA/CaH mice, which develop mild and severe tissue damage, respectively. Depletion of CD4(+) lymphocytes from BALB/c mice markedly increased tissue damage, but did not alter the course of infection. In CBA/CaH mice, depletion of CD4+ cells abrogated tissue destruction in both brain and kidney at day 4 after infection, and significantly decreased fungal colonization in the brain. However, the severity of tissue lesions increased relative to controls from day 8 onwards. A small increase in tissue damage was evident in both mouse strains after depletion of CD8(+) cells. There were no major differences between days 4 end 8 after infection in cDNA cytokine profiles of CD4(+) lymphocytes from either BALB/c or CBA/CaH mice. After passive transfer into infected syngeneic recipients, spleen cells from infected CBA/CaH mice markedly increased tissue damage when compared to controls, and also caused a significant increase in fungal colonization in the brain. A similar transfer in BALB/c mice increased the number of inflammatory cells in and around the lesions, but had no effect on the fungal burden in brain and kidney. The data demonstrate that both CD4(+) and CD8(+) lymphocytes contribute to the reduction of tissue damage after systemic infection with C. albicans, and that the development and expression of CD4(+) lymphocyte effector function is influenced by the genetic background of the mouse.
Resumo:
The aim was to determine whether uptake of 5-hydroxytryptamine (5-HT) by the 5-HT transporter (SERT) modulates contractile responses to 5-HT in rat pulmonary arteries and whether this modulation is altered by exposure of rats to chronic hypoxia (10% oxygen; 8 h/day; 5 days). The effects of the SERT inhibitor, citalopram (100 nM), on contractions to 5-HT were determined in isolated ring preparations of pulmonary artery (intralobar and main) and compared with data obtained in systemic arteries. In intralobar pulmonary arteries citalopram produced a potentiation (viz. an increase in potency, pEC(50)) of 5-HT. The potentiation was endothelium-dependent in preparations from normoxic rats but endothelium-independent in preparations from hypoxic rats. In main pulmonary artery endothelium-independent potentiation was seen in preparations from hypoxic rats but no potentiation occurred in preparations from normoxic rats. In systemic arteries, citalopram caused endothelium-independent potentiation in aorta but no potentiation in mesenteric arteries; there were no differences between hypoxic and normoxic rats. It is concluded that SERT can influence the concentration of 5-HT in the vicinity of the vasoconstrictor receptors in pulmonary arteries. The data suggest that in pulmonary arteries from hypoxic rats, unlike normoxic rats, the SERT responsible for this effect is not in the endothelium and, hence, is probably in the smooth muscle. The data are compatible with reports that, in the pulmonary circulation, hypoxia induces/up-regulates SERT, and hence increases 5-HT uptake, in vascular smooth muscle. The findings may have implications in relation to the suggested use of SERT inhibitors in the treatment of pulmonary hypertension.
Resumo:
The targeting of topically applied drug molecules into tissues below a site of application requires an understanding of the complex interrelationships between the drug, its formulation, the barrier properties of the skin, and the physiological processes occurring below the skin that are responsible for drug clearance from the site, tissue, and/or systemic distribution and eventual elimination. There is still a certain amount of controversy over the ability of topically applied drugs to penetrate into deeper tissues by diffusion or whether this occurs by redistribution in the systemic circulation. The major focus of our work in this area has been in determining how changes in drug structure and physicochemical properties, such as protein binding and lipophilicity, affect drug clearance into the local dermal microcirculation and lymphatics, as well as subsequent distribution into deeper tissues below an application site. The present study outlines our recent thinking on the drug molecule optimal physical attributes, in terms of plasma and tissue partitioning behaviour, that offer the greatest potential for deep tissue targeting. Drug Dev. Res. 46:309-315, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
The Ile-->Ser84 substitution in the thyroid hormone transport protein transthyretin is one of over 50 variations found to be associated with familial amyloid polyneuropathy, a hereditary type of lethal amyloidosis. Using a peptide analogue of the loop containing residue 84 in transthyretin, we have examined the putative local structural effects of this substitution using H-1-NMR spectroscopy. The peptide, containing residues 71-93 of transthyretin with its termini linked via a disulfide bond, was found to possess the same helix-turn motif as in the corresponding region of the crystallographically derived structure of transthyretin in 20% trifluoroethanol (TFE) solution. It therefore, represents a useful model with which to examine the effects of amyloidogenic substitutions. In a peptide analogue containing the Ile84-->Ser substitution it was found that the substitution does not greatly disrupt the overall three-dimensional structure, but leads to minor local differences at the turn in which residue 84 is involved. Coupling constant and NOE measurements indicate that the helix-turn motif is still present, but differences in chemical shifts and amide-exchange rates reflect a small distortion. This is in keeping with observations that several other mutant forms of transthyretin display similar subunit interactions and those that have been structurally analysed possess a near native structure. We propose that the Ser84 mutation induces only subtle perturbations to the transthyretin structure which predisposes the protein to amyloid formation.
Resumo:
The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75NTR can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease. (C) 2001 Wiley-Liss, Inc.
Resumo:
Spinosad, applied as a jetting solution or dip is an efficacious, non-systemic treatment for the control of Bovicola ovis in sheep. This paper describes the effect of back-line treatment width and group housing of animals on the efficacy of spinosad for the control of lice. A 0.4 mg/kg liveweight dose was found to be the suboptimal dose of spinosad for the control of body lice in a dose titration study and was used to investigate application and housing effects in a second study. Lousy Merino sheep were treated with either a narrow 3-cm application of spinosad or with a wider 25-cm swathe. After treatment they were either kept alone or in groups of 6 sheep per pen. Lice were counted at day 0 and every 14 days to 70 days after treatment before estimation of the percentage of lice control and analysis of treatment effects. A much higher percentage of lice control was achieved with 0.4 mg/kg in the second study than in the first, possibly because of differences in formulation used. The wider application width gave significantly higher (P < 0.05) control of lice than the narrow application when sheep were either housed alone or in groups up to day 42 post-treatment. Greater control of lice was seen in group-housed sheep compared with sheep housed individually (P < 0.05) up to day 70. Using broader application widths combined with holding the animals together after treatment with pour-on formulations may optimise the delivery and efficacy of ectoparasiticides for livestock.
Resumo:
This study investigated treatment of mango (Mangifera indica L.) fruit with 2 host defence-promoting compounds for suppression of anthracnose disease (Colletotrichum gloeosporioides). Cultivar 'Kensington Pride' fruit were treated at concentrations of up to 1000 mg/L with either potassium phosphonate or salicylic acid. Applications were by various combinations of pre- and postharvest dips and vacuum infiltration. Postharvest treatments at up to 2000 mg/L salicylic acid were evaluated in a second fruiting season. Fruit were either uninoculated or inoculated with the fungal pathogen. Colour, firmness and disease-severity were assessed during shelf life at 23 degreesC. There were no significant (P>0.05) effects of potassium phosphonate or salicylic acid on anthracnose disease severity in the first season. Moreover, phosphonate or salicylic acid treatment did not significantly affect fruit colour or firmness changes. There were significant (P
Resumo:
The platelet inhibitory effects of the nitric oxide (NO) donor drug MAHMA NONOate ((Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino] diazen-1-ium-1,2-diolate) were examined in anaesthetised rats and compared with those of S-nitrosoglutathione (GSNO; an S-nitrosothiol). Bolus administration of the aggregating agent ADP dose-dependently reduced the number of circulating free platelets. Intravenous infusions of MAHMA NONOate (3-30 nmol/kg/min) dose-dependently inhibited the effect of 0.3 mumol/kg ADP. MAHMA NONOate was approximately 10-fold more potent than GSNO. MAHMA NONOate (0.3-10 nmol/kg/min) also reduced systemic artery pressure and was again 10-fold more potent than GSNO. Thus MAHMA NONOate has both platelet inhibitory and vasodepressor effects in vivo. The dose ranges for these two effects overlapped, although blood pressure was affected at slightly lower doses. The platelet inhibitory effects compared favourably with those of GSNO, even though NONOates generate free radical NO which, in theory, could have been scavenged by haemoglobin. Therefore platelet inhibition may be a useful therapeutic property of NONOates. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1 (IL-1, 1 g/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1 administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1 could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1.
Resumo:
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.
Resumo:
Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.