6 resultados para system code
em University of Queensland eSpace - Australia
Resumo:
The functional activity of the neural cell adhesion molecule N-CAM can be modulated by posttranslational modifications such as glycosylation. For instance, the long polysialic acid side chains of N-CAM alter the adhesion properties of the protein backbone. In the present study, we identified two novel carbohydrates present on N-CAM, NOC-3 and NOC-4. Both carbohydrates were detected on N-CAM glycoforms expressed by subpopulations of primary sensory olfactory neurons in the rat olfactory system. Based on the expression of NOC-3 and NOC-4 and the olfactory marker protein (OMP), four independent subpopulations of primary sensory olfactory neurons were characterized. These neurons expressed: both NOC-3 and NOC-4 but not OMP; both NOC-4 and OMP but not NOC-3; NOC-3, NOC-4, and OMP together; and OMP alone. The NOC-3- and NOC-4-expressing neurons were widely dispersed in the olfactory neuroepithelium lining the nasal cavity. The axons of NOC-4 expressing neurons innervated all glomeruli in the olfactory bulb, whereas the NOC-3 expressing axons terminated in a discrete subset of glomeruli scattered throughout the whole olfactory bulb. We propose that both NOC-3 and NOC-4 are part of a chemical code of olfactory neurons which is used in establishing the topography of connections between the olfactory neuroepithelium and the olfactory bulb. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Design of liquid retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgment, code of practice and previous experience. Various design parameters to be chosen include configuration, material, loading, etc. A novice engineer may face many difficulties in the design process. Recent developments in artificial intelligence and emerging field of knowledge-based system (KBS) have made widespread applications in different fields. However, no attempt has been made to apply this intelligent system to the design of liquid retaining structures. The objective of this study is, thus, to develop a KBS that has the ability to assist engineers in the preliminary design of liquid retaining structures. Moreover, it can provide expert advice to the user in selection of design criteria, design parameters and optimum configuration based on minimum cost. The development of a prototype KBS for the design of liquid retaining structures (LIQUID), using blackboard architecture with hybrid knowledge representation techniques including production rule system and object-oriented approach, is presented in this paper. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Objective: To develop a 'quality use of medicines' coding system for the assessment of pharmacists' medication reviews and to apply it to an appropriate cohort. Method: A 'quality use of medicines' coding system was developed based on findings in the literature. These codes were then applied to 216 (111 intervention, 105 control) veterans' medication profiles by an independent clinical pharmacist who was supported by a clinical pharmacologist with the aim to assess the appropriateness of pharmacy interventions. The profiles were provided for veterans participating in a randomised, controlled trial in private hospitals evaluating the effect of medication review and discharge counselling. The reliability of the coding was tested by two independent clinical pharmacists in a random sample of 23 veterans from the study population. Main outcome measure: Interrater reliability was assessed by applying Cohen's kappa score on aggregated codes. Results: The coding system based on the literature consisted of 19 codes. The results from the three clinical pharmacists suggested that the original coding system had two major problems: (a) a lack of discrimination for certain recommendations e. g. adverse drug reactions, toxicity and mortality may be seen as variations in degree of a single effect and (b) certain codes e. g. essential therapy were in low prevalence. The interrater reliability for an aggregation of all codes into positive, negative and clinically non-significant codes ranged from 0.49-0.58 (good to fair). The interrater reliability increased to 0.72-0.79 (excellent) when all negative codes were excluded. Analysis of the sample of 216 profiles showed that the most prevalent recommendations from the clinical pharmacists were a positive impact in reducing adverse responses (31.9%), an improvement in good clinical pharmacy practice (25.5%) and a positive impact in reducing drug toxicity (11.1%). Most medications were assigned the clinically non-significant code (96.6%). In fact, the interventions led to a statistically significant difference in pharmacist recommendations in the categories; adverse response, toxicity and good clinical pharmacy practice measured by the quality use of medicine coding system. Conclusion: It was possible to use the quality use of medicine coding system to rate the quality and potential health impact of pharmacists' medication reviews, and the system did pick up differences between intervention and control patients. The interrater reliability for the summarised coding system was fair, but a larger sample of medication regimens is needed to assess the non-summarised quality use of medicines coding system.
Resumo:
This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.