4 resultados para system call frequencies
em University of Queensland eSpace - Australia
Resumo:
We often need to estimate the size of wild populations to determine the appropriate management action, for example, to set a harvest quota. Monitoring is usually planned under the assumption that it must be carried out at fixed intervals in time, typically annually, before the harvest quota is set. However, monitoring can be very expensive, and we should weigh the cost of monitoring against the improvement that it makes in decision making. A less costly alternative to monitoring annually is to predict the population size using a population model and information from previous surveys. In this paper, the problem of monitoring frequency is posed within a decision-theory framework. We discover that a monitoring regime that varies according to the state of the system call outperform fixed-interval monitoring This idea is illustrated using data for a red kangaroo (Macropits rufus) population in South Australia. Whether or not one should monitor in a given year is dependent on the estimated population density in the previous year, the uncertainty in that population estimate, and past rainfall. We discover that monitoring is-important when a model-based prediction of population density is very uncertain. This may occur if monitoring has not taken place for several years, or if rainfall has been above average. Monitoring is also important when prior information suggests that the population is near a critical threshold in population abundance. However, monitoring is less important when the optimal management action would not be altered by new information.
Resumo:
In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.
Resumo:
With marine biodiversity conservation the primary goal for reserve planning initiatives, a site's conservation potential is typically evaluated on the basis of the biological and physical features it contains. By comparison, socio-economic information is seldom a formal consideration of the reserve system design problem and generally limited to an assessment of threats, vulnerability or compatibility with surrounding uses. This is perhaps surprising given broad recognition that the success of reserve establishment is highly dependent on widespread stakeholder and community support. Using information on the spatial distribution and intensity of commercial rock lobster catch in South Australia, we demonstrate the capacity of mathematical reserve selection procedures to integrate socio-economic and biophysical information for marine reserve system design. Analyses of trade-offs highlight the opportunities to design representative, efficient and practical marine reserve systems that minimise potential loss to commercial users. We found that the objective of minimising the areal extent of the reserve system was barely compromised by incorporating economic design constraints. With a small increase in area (< 3%) and boundary length (< 10%), the economic impact of marine reserves on the commercial rock lobster fishery was reduced by more than a third. We considered also how a reserve planner might prioritise conservation areas using information on a planning units selection frequency. We found that selection frequencies alone were not a reliable guide for the selection of marine reserve systems, but could be used with approaches such as summed irreplaceability to direct conservation effort for efficient marine reserve design.
Resumo:
We study the electrical transport of a harmonically bound, single-molecule C-60 shuttle operating in the Coulomb blockade regime, i.e. single electron shuttling. In particular, we examine the dependance of the tunnel current on an ultra-small stationary force exerted on the shuttle. As an example, we consider the force exerted on an endohedral N@C-60 by the magnetic field gradient generated by a nearby nanomagnet. We derive a Hamiltonian for the full shuttle system which includes the metallic contacts, the spatially dependent tunnel couplings to the shuttle, the electronic and motional degrees of freedom of the shuttle itself and a coupling of the shuttle's motion to a phonon bath. We analyse the resulting quantum master equation and find that, due to the exponential dependence of the tunnel probability on the shuttle-contact separation, the current is highly sensitive to very small forces. In particular, we predict that the spin state of the endohedral electrons of N@C-60 in a large magnetic gradient field can be distinguished from the resulting current signals within a few tens of nanoseconds. This effect could prove useful for the detection of the endohedral spin-state of individual paramagnetic molecules such as N@C-60 and P@C-60, or the detection of very small static forces acting on a C-60 shuttle.