39 resultados para swing check valve
em University of Queensland eSpace - Australia
Resumo:
Background. Human aortic valve allografts elicit a cellular and humoral immune response. It is not clear whether this is important in promoting valve damage. We investigated the changes in morphology, cell populations, and major histocompatibility complex antigen distribution in the rat aortic valve allograft. Methods. Fresh heart valves from Lewis rats were transplanted into the abdominal aorta of DA rats. Valves from allografted, isografted, and presensitized recipient rats were examined serially with standard morphologic and immunohistochemical techniques. Results. In comparison with isografts, the allografts were infiltrated and thickened by increased numbers of CD4(+) and CD8(+) lymphocytes, macrophages, and fibroblasts. Thickening of the valve wall and leaflet and the density of the cellular infiltrate was particularly evident after presensitization. Endothelial cells were frequently absent in presensitized allografts whereas isografts had intact endothelium. Cellular major histocompatibility complex class I and II antigens in the allograft were substantially increased. A long-term allograft showed dense fibrosis and disruption of the media with scattered persisting donor cells. Conclusions. The changes in these aortic valve allograft experiments are consistent with an allograft immune response and confirm that the response can damage aortic valve allograft tissue. (C) 1998 by The Society of Thoracic Surgeons.
Resumo:
Background and aim of the study: Results of valve re-replacement (reoperation) in 898 patients undergoing aortic valve replacement with cryopreserved homograft valves between 1975 and 1998 are reported. The study aim was to provide estimates of unconditional probability of valve reoperation and cumulative incidence function (actual risk) of reoperation. Methods: Valves were implanted by subcoronary insertion (n = 500), inclusion cylinder (n = 46), and aortic root replacement (n = 352). Probability of reoperation was estimated by adopting a mixture model framework within which estimates were adjusted for two risk factors: patient age at initial replacement, and implantation technique. Results: For a patient aged 50 years, the probability of reoperation in his/her lifetime was estimated as 44% and 56% for non-root and root replacement techniques, respectively. For a patient aged 70 years, estimated probability of reoperation was 16% and 25%, respectively. Given that a reoperation is required, patients with non-root replacement have a higher hazard rate than those with root replacement (hazards ratio = 1.4), indicating that non-root replacement patients tend to undergo reoperation earlier before death than root replacement patients. Conclusion: Younger patient age and root versus non-root replacement are risk factors for reoperation. Valve durability is much less in younger patients, while root replacement patients appear more likely to live longer and hence are more likely to require reoperation.
Resumo:
Objectives and Methods: Reoperations are an integral part of a cardiac surgeon's practice. We share our experience of 546 reoperations over the last 21 years to January 2000, with the focus directed towards the timing of reoperation, reducing the mortality and morbidity of reoperation and rereplacement aortic valve surgery, and understanding the important risk factors. In addition, the precise technical steps that facilitate careful successful explantation of various devices (allograft, stented and stentless xenografts, and mechanical valves) are detailed. Results: Optimal planned reoperation before deterioration to New York Heart Association Class III/IV levels and before unfavorable cardiac and comorbidity general system failure occurs has produced low mortality and morbidity as compared with first operation results. However, unfavorable delays and late rereferral result in mortality rates of up to 22% for emergency redo AVR for degenerated bioprostheses. Conclusion: Cardiac surgical units have the opportunity to establish a closer patient-surgeon relationship, which favors, when necessary, the optimal timing of reoperation. Knowledge of the more important risk factors and adherence to specific technical steps at explantation of various devices enhances satisfactory reoperation outcomes.
Resumo:
Biologic valve re-replacement was examined in a series of 1343 patients who underwent aortic valve replacement at The Prince Charles Hospital, Brisbane, with a cryopreserved or 4 degrees C stored allograft valve or a xenograft valve, A parametric model approach was used to simultaneously model the competing risks of death without re-replacement and re-replacement before death, One hundred eleven patients underwent a first re-replacement for a variety of reasons (69 patients with xenograft valves, 28 patients with 4 degrees C stored allograft valves, and 14 patients with cryopreserved allograft valves), By multivariable analysis younger age at operation was associated with xenograft, 4 degrees C stored allograft, and cryopreserved allograft valve re-replacement, However, this effect was examined in the context of longer survival of younger patients, which increases their exposure to the risk of re-replacement as compared with that in older patients whose decreased survival reduced their probability of requiring valve re-replacement, In patients older than 60 years at the time of aortic valve replacement, the probability of re-replacement (for any reason) before death was similar for xenografts and cryopreserved allograft valves but higher for 4 degrees C stored valves, However, in patients younger than 60 years, the probability of re-replacement at any time during the remainder of the life of the patient was lower with the cryopreserved allograft valve compared with the xenograft valve and 4 degrees C stored allografts.
Resumo:
Background - Marfan syndrome (MS) is a genetic disorder caused by a mutation in the fibrillin gene FBN1. Bicuspid aortic valve (BAV) is a congenital heart malformation of unknown cause. Both conditions are associated with ascending aortic aneurysm and premature death. This study examined the relationship among the secretion of extracellular matrix proteins fibrillin, fibronectin, tenascin, and vascular smooth muscle cell (VSMC) apoptosis. The role of matrix metalloproteinase (MMP)- 2 in VSMC apoptosis was studied in MS aneurysm. Methods and Results - Aneurysm tissue was obtained from patients undergoing surgery ( MS: 4 M, 1 F, age 27 - 45 years; BAV: 3 M, 2 F, age 28 - 65 years). Normal aorta from subjects with nonaneurysm disease was also collected ( 4 M, 1 F, age 23 - 93 years). MS and BAV aneurysm histology showed areas of cystic medial necrosis (CMN) without inflammatory infiltrate. Immunohistochemical study of cultured MS and BAV VSMC showed intracellular accumulation and reduction of extracellular distribution of fibrillin, fibronectin, and tenascin. Western blot showed no increase in expression of fibrillin, fibronectin, or tenascin in MS or BAV VSMC and increased expression of MMP-2 in MS VSMCs. There was 4-fold increase in loss of cultured VSMC incubated in serum-free medium for 24 hours in both MS ( 27 +/- 8%) and BAV ( 32 +/- 14%) compared with control ( 7 +/- 5%). Conclusions - In MS and BAV there is alteration in both the amount and quality of secreted proteins and an increased degree of VSMC apoptosis. Up-regulation of MMP-2 might play a role in VSMC apoptosis in MS VSMC. The findings suggest the presence of a fundamental cellular abnormality in BAV thoracic aorta, possibly of genetic origin.
Resumo:
An energy-based swing hammer mill model has been developed for coke oven feed preparation. it comprises a mechanistic power model to determine the dynamic internal recirculation and a perfect mixing mill model with a dual-classification function to mimic the operations of crusher and screen. The model parameters were calibrated using a pilot-scale swing hammer mill at various operating conditions. The effects of the underscreen configurations and the feed sizes on hammer mill operations were demonstrated through the fitted model parameters. Relationships between the model parameters and the machine configurations were established. The model was validated using the independent experimental data of single lithotype coal tests with the same BJD pilot-scale hammer mill and full operation audit data of an industrial hammer mill. The outcome of the energy-based swing hammer mill model is the capability to simulate the impact of changing blends of coal or mill configurations and operating conditions on product size distribution. Alternatively, the model can be used to select the machine settings required to achieve a desired product. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The occurrence of chaotic instabilities is investigated in the swing motion of a dragline bucket during operation cycles. A dragline is a large, powerful, rotating multibody system utilised in the mining industry for removal of overburden. A simplified representative model of the dragline is developed in the form of a fundamental non-linear rotating multibody system with energy dissipation. An analytical predictive criterion for the onset of chaotic instability is then obtained in terms of critical system parameters using Melnikov's method. The model is shown to exhibit chaotic instability due to a harmonic slew torque for a range of amplitudes and frequencies. These chaotic instabilities could introduce irregularities into the motion of the dragline system, rendering the system difficult to control by the operator and/or would have undesirable effects on dragline productivity and fatigue lifetime. The sufficient analytical criterion for the onset of chaotic instability is shown to be a useful predictor of the phenomenon under steady and unsteady slewing conditions via comparisons with numerical results. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We evaluated the hydrodynamic performance of kangaroo aortic valve matrices (KMs) (19, 21, and 23 mm), as potential scaffolds in tissue valve engineering using a pulsatile left heart model at low and high cardiac outputs (COs) and heart rates (HRs) of 60 and 90 beats/min. Data were measured in two samples of each type, pooled in two CO levels (2.1 +/- 0.7 and 4.2 +/- 0.6 L/min; mean +/- standard errors on the mean), and analyzed using analysis of variance with CO level, HR, and valve type as fixed factors and compared to similar porcine matrices (PMs). Transvalvular pressure gradient (Delta P) was a function of HR (P < 0.001) and CO (P < 0.001) but not of valve type (P = 0.39). Delta P was consistently lower in KMs but not significantly different from PMs. The effective orifice area and performance index of kangaroo matrices was statistically larger for all sizes at both COs and HRs.
Resumo:
A 52-year-old male with idiopathic hypereosinophilic syndrome (HES) was transferred to our institution following the development of acute respiratory failure and shock. He had previously undergone tricuspid valve replacement with bioprosthetic valves on two occasions: the initial surgery for severe native tricuspid valve stenosis and the redo surgery for severe prosthetic valve stenosis and regurgitation. Conventional imaging assessment using transoesophageal echocardiography was suboptimal and comprehensive assessment of prosthetic valve function was aided by the use of intracardiac echocardiography (ICE). ICE provided high quality 2D imaging of the prosthesis demonstrating thrombus-like material coating the inner surfaces of the prosthetic valve stents effectively forming a tunnel-like obstruction. Unusual hemodynamics secondary to severe tricuspid stenosis were demonstrated by CW Doppler with intermittent signal fusion resulting from blunted respiratory variation in the markedly elevated right atrial pressure relative to right ventricular pressure. Successful balloon valvuloplasty was performed with ICE proving highly valuable in guiding balloon position as well as monitoring the efficacy of the subsequent inflations.