9 resultados para swine excrements

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroN(E).(coli), traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STh, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the comparative susceptibility of indigenous Moo Laat and improved Large White/Landrace pig breeds to infection with classical swine fever virus (CSFV) under controlled conditions in the Lao People's Democratic Republic (Lao PDR). The Moo Laat (ML) and Large White/Landrace crossbreed (LWC) pigs were inoculated with a standard challenge strain designated Lao/Kham225 (infectivity titre of 10(2.75) TCID50/ml). The results demonstrated that both the native breed and an improved pig breed are fully susceptible to CSFV infection and the mortality rate is high. LWC pigs demonstrated lower (or shorter) survival times (50% survival time: 11 days), earlier and higher pyrexia and earlier onset of viraemia compared to ML pigs (50% survival time: 18 days). In the context of village-based pig production, the longer time from infection to death in native ML pigs means that incubating or early sick pigs are likely to be sold once an outbreak of CSF is recognized in a village. This increased longevity probably contributes to the maintenance and spread of disease in a population where generally the contact rate is low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the H(IV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV), We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host), The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To evaluate the effect of periparturient disease accompanied by vulval discharge, and weaning-to-mating intervals, on sow fertility and litter size. Design Reproductive data were collected and analysed from 19 Hungarian swine herds over a 4 year period. Conception rates, farrowing rates and litter sizes of sows with periparturient disease accompanied by vulval discharge were used to evaluate the relationship between duration of vulval discharge and subsequent fertility and litter size. The possibility of interactions between weaning-to-mating intervals and duration of vulval discharges was investigated to determine if there was any effect on subsequent fertility and litter size. Results and conclusions Both parity 1 and parity 2 to 8 sows having had periparturient disease accompanied by vulval discharge in excess of 6 days duration had significantly (P < 0.001) lower subsequent fertility (conception, farrowing and adjusted farrowing rates) compared with sows of similar parity where the duration of vulval discharge was < 4 or 4 to 6 days. There was no difference in fertility rates between sows, in both parity categories, with vulval discharge for < 4 days compared with 4 to 6 days. A duration of vulval discharge in excess of 6 days in parity 1 sows significantly reduced litter size (total born and live-born) in subsequent farrowings, but not in parity 2 to 8 sows. There was no interaction between the duration of vulval discharge and post-weaning to mating intervals. However sows with weaning to mating intervals between 7 and 10 days had smaller (P < 0.001) subsequent litter sizes compared with 3 to 6 or 11 to 14 day intervals. It was concluded that the duration of vulval discharge in excess of 6 days was an indication of a severe persistent endometritis adversely affecting fertility of sows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A self-modulating mechanism by the hepatitis C virus (HCV) core protein has been suggested to influence the level of HCV replication, but current data on this subject are contradictory. We examined the effect of wild-type and mutated core protein on HCV IRES- and cap-dependent translation. The wild-type core protein was shown to inhibit both IRES- and cap-dependent translation in an in vitro system. This effect was duplicated in a dose-dependent manner with a synthetic peptide representing amino acids 1-20 of the HCV core protein. This peptide was able to bind to the HCV IRES as shown by a mobility shift assay. In contrast, a peptide derived from the hepatitis B virus (HBV) core protein that contained a similar proportion of basic residues was unable to inhibit translation or bind the HCV IRES. A recombinant vaccinia-HCV core virus was used to examine the effect of the HCV core protein on HCV IRES-dependent translation in cells and this was compared with the effects of an HBV core-recombinant vaccinia virus. In CV-1 and HuH7 cells, the HCV core protein inhibited translation directed by the IRES elements of HCV, encephalomyocarditis virus and classical swine fever virus as well as cap-dependent translation, whereas in HepG2 cells, only HCV IRES-dependent translation was affected. Thus, the ability of the HCV core protein to selectively inhibit HCV IRES-dependent translation is cell-specific. N-terminal truncated (aa 1-20) HCV core protein that was expressed from a novel recombinant vaccinia virus in cells abrogated the inhibitory phenotype of the core protein in vivo, consistent with the above in vitro data.