11 resultados para swd: High Dynamic Range

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In various signal-channel-estimation problems, the channel being estimated may be well approximated by a discrete finite impulse response (FIR) model with sparsely separated active or nonzero taps. A common approach to estimating such channels involves a discrete normalized least-mean-square (NLMS) adaptive FIR filter, every tap of which is adapted at each sample interval. Such an approach suffers from slow convergence rates and poor tracking when the required FIR filter is "long." Recently, NLMS-based algorithms have been proposed that employ least-squares-based structural detection techniques to exploit possible sparse channel structure and subsequently provide improved estimation performance. However, these algorithms perform poorly when there is a large dynamic range amongst the active taps. In this paper, we propose two modifications to the previous algorithms, which essentially remove this limitation. The modifications also significantly improve the applicability of the detection technique to structurally time varying channels. Importantly, for sparse channels, the computational cost of the newly proposed detection-guided NLMS estimator is only marginally greater than that of the standard NLMS estimator. Simulations demonstrate the favourable performance of the newly proposed algorithm. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a scheme for measurement of the mean photon flux at an arbitrary optical sideband frequency using homodyne detection. Experimental implementation of the technique requires an acousto-optic modulator in addition to the homodyne detector, and does not require phase locking. The technique exhibits polarization and frequency and spatial mode selectivity, as well as much improved speed, resolution, and dynamic range when compared to linear photodetectors and avalanche photodiodes, with potential application to quantum-state tomography and information encoding using an optical frequency basis. Experimental data also support a quantum-mechanical description of vacuum noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently discovered human bocavirus (HBoV) is the first member of the family Parpoviridae, genus Bocavirus, to be potentially associated with human disease. Several studies have identified HBoV in respiratory specimens from children with acute respiratory disease, but the full spectrum of clinical disease and the epidemiology of HBoV infection remain unclear. The availability of rapid and reliable molecular diagnostics would therefore aid future studies of this novel virus. To address this, we developed two sensitive and specific real-time TaqMan PCR assays that target the HBoV NS1 and NP-1 genes. Both assays could reproducibly detect 10 copies of a recombinant DNA plasmid containing a partial region of the HBoV genome, with a dynamic range of 8 log units (10(1) to 10(8) copies). Eight blinded clinical specimen extracts positive for HBoV by an independent PCR assay were positive by both real-time assays. Among 1,178 NP swabs collected from hospitalized pneumonia patients in Sa Kaeo Province, Thailand, 53 (4.5%) were reproducibly positive for HBoV by one or both targets. Our data confirm the possible association of HBoV infection with pneumonia and demonstrate the utility of these real-time PCR assays for HBoV detection.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A dynamic model which describes the impulse behavior of concentrated grounds at high currents is described in this paper. This model is an extension of previous models in that it can successfully account for the surge behavior of concentrated grounds over a much wider range of current densities. It is able to describe the well known effect of ionization of soil as well as the observed effect of discrete breakdowns and filamentary arc paths at much higher currents. Results of verification against experimental results are also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Aims Quercus petraea colonized Ireland after the last glaciation from refugia on mainland Europe. Deforestation. however. beginning in Neolithic times, has resulted in small, scattered forest fragments, now covering less than 12 000 ha. Methods Plastid (three fragments) and microsatellite variation (13 loci) were characterized in seven Irish populations sampled along a north-south gradient. Using Bayesian approaches and Wright's F-statistics, the effects of colonization and fragmentation on the genetic structure and mating patterns of extant oak populations were investigated. Key-Results All Populations possessed cytotypes common to the Iberian Peninsula. Despite the distance from the refugial core and the extensive deforestation in Ireland, nuclear genetic variation was high and comparable to mainland Europe. Low population differentiation was observed within Ireland and populations showed no evidence for isolation by distance. As expected of a marker with an effective Population size of one-quarter relative to the nuclear genome, plastid variation indicated higher differentiation. Individual inbreeding coefficients indicated high levels of outcrossing. Conclusions Consistent with a large effective Population size in the historical migrant gene pool and/or with high gene flow among populations, high within-population diversity and low population differentiation was observred within Ireland. It is proposed that native Q. petraea populations in Ireland share a common phylogeographic history and that the present genetic structure does not reflect founder effects. (C) 2004 Annals of Botany Company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The notorious "dimensionality curse" is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well-known approach to overcome degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them are challenging tasks. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has four notable features compared to existing methods. First, it discovers elliptical clusters for more effective dimensionality reduction by using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B+-tree. Third, our technique is highly scalable in terms of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An extensive performance study was conducted using both real and synthetic datasets, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently. Copyright Springer-Verlag 2005

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A range of polyimides have been subjected to electron beam radiolysis at different temperatures. These polyimides were chemically designed to suit space applications, being either transparent or having groups which provide oxidation resistance. The structural changes that occur in the polyimides, when subjected to electron beam irradiation doses up to 18.5 MGy and up to temperatures close to their glass transition temperatures, were studied using FT-Raman spectroscopy. The range of polyimides studied included a series of perfluoropolyimides, a silicon-modified polyimide, and Ultem. The changes in the Raman peak intensities of the different groups indicated scission reactions involving the imide rings and ether linkages. (c) 2006 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bang-bang phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed a process can make a working flip-flop. For these reasons designers are employing them in the design of very high speed Clock Data Recovery (CDR) architectures. The major drawback of this class of PLL is the inherent jitter due to quantized phase and frequency corrections. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. This paper presents a novel PLL design that dynamically scales its gain in order to achieve fast lock times while improving fitter performance in lock. Under certain circumstances the design also demonstrates improved capture range. This paper also analyses the behaviour of a bang-bang type PLL when far from lock, and demonstrates that the pull-in range is proportional to the square root of the PLL loop gain.