45 resultados para survival data analysis
em University of Queensland eSpace - Australia
Resumo:
A combination of deductive reasoning, clustering, and inductive learning is given as an example of a hybrid system for exploratory data analysis. Visualization is replaced by a dialogue with the data.
Resumo:
The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.
Resumo:
Regional planners, policy makers and policing agencies all recognize the importance of better understanding the dynamics of crime. Theoretical and application-oriented approaches which provide insights into why and where crimes take place are much sought after. Geographic information systems and spatial analysis techniques, in particular, are proving to be essential or studying criminal activity. However, the capabilities of these quantitative methods continue to evolve. This paper explores the use of geographic information systems and spatial analysis approaches for examining crime occurrence in Brisbane, Australia. The analysis highlights novel capabilities for the analysis of crime in urban regions.
Resumo:
Qualitative data analysis (QDA) is often a time-consuming and laborious process usually involving the management of large quantities of textual data. Recently developed computer programs offer great advances in the efficiency of the processes of QDA. In this paper we report on an innovative use of a combination of extant computer software technologies to further enhance and simplify QDA. Used in appropriate circumstances, we believe that this innovation greatly enhances the speed with which theoretical and descriptive ideas can be abstracted from rich, complex, and chaotic qualitative data. © 2001 Human Sciences Press, Inc.
Resumo:
The development of scramjet propulsion for alternative launch and payload delivery capabilities has been composed largely of ground experiments for the last 40 years. With the goal of validating the use of short duration ground test facilities, a ballistic reentry vehicle experiment called HyShot was devised to achieve supersonic combustion in flight above Mach 7.5. It consisted of a double wedge intake and two back-to-back constant area combustors; one supplied with hydrogen fuel at an equivalence ratio of 0.34 and the other unfueled. Of the two flights conducted, HyShot 1 failed to reach the desired altitude due to booster failure, whereas HyShot 2 successfully accomplished both the desired trajectory and satisfactory scramjet operation. Postflight data analysis of HyShot 2 confirmed the presence of supersonic combustion during the approximately 3 s test window at altitudes between 35 and 29 km. Reasonable correlation between flight and some preflight shock tunnel tests was observed.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.
Resumo:
In an investigation intended to determine training needs of night crews, Bowers et al. (1998, this issue) report two studies showing that the patterning of communication is a better discriminator of good and poor crews than is the content of communication. Bowers et al. characterize their studies as intended to generate hypotheses for training needs and draw connections with Exploratory Sequential Data Analysis (ESDA). Although applauding the intentions of Bowers ct al., we point out some concerns with their characterization and implementation of ESDA. Our principal concern is that the Bowers et al. exploration of the data does not convincingly lead them back to a better fundamental understanding of the original phenomena they are investigating.