2 resultados para surface-enhanced Raman scattering

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We comment on the recent Letter by Argyros et al. [Opt. Lett. 29, 1882 (2004)] in which a microstructured polymer fiber doped with the dye Rhodamine 6G was discussed as a possible fiber laser source. We suggest that the lasing action at 632 nm was due to stimulated Raman scattering in the poly(methyl methacrylate) host material. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double- walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67 - 4 nm and 1.96 - 3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10 - 30 nm in diameter with high purity ( about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.