2 resultados para sunset
em University of Queensland eSpace - Australia
Resumo:
For the Western-Pacific region spread-F has been found to occur with delays after geomagnetic activity (GA) ranging from 5 to 10 days as station groups are considered from low midlatitudes to equatorial regions. The statistical (superposed-epoch) analyses also indicate that at the equator the spread-F, and therefore associated medium-scale traveling ionospheric disturbances (MS-TIDs) occur with additional delays around 16, 22 and 28 days representing a 6-day modulation of the delay period. These results are compared with similar delays, including the modulation, for D-region enhanced hydroxyl emission (Shefov, 1969). It is proposed that this similarity may be explained by MS-TIDs influencing both the F and D regions as they travel. Long delays of over 20 days are also found near the equator for airglow-measured MS-TIDs (Sobral et al., 1997). These are recorded infrequently and have equatorward motions, while normally eastward motions are measured at the equator. Also in midlatitudes D-region absorption events have been shown (statistically) to have similar long delays after GA. It is suggested that atmospheric gravity waves and associated MS-TIDs may be generated by some of the precipitations responsible for the absorption. The recording of the delayed spread-F events depends on the GA being well below the average levels around sunset on the nights of recording. This implies that lower upper-atmosphere neutral particle densities are necessary.
Resumo:
Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.