42 resultados para sums of squares
em University of Queensland eSpace - Australia
Resumo:
We investigated the role of chemoreception in the host selection and oviposition behaviour of Helicoverpa armigera in the laboratory using five cotton genotypes and synthetic volatile terpenes. Female moths oviposited on substrates treated with methanol, ethanol, acetone and pentane extracts of leaves, squares and flowers of the cotton genotypes. Phytochemicals soluble in pentane were the most efficient in eliciting oviposition behaviour. In a two-way bioassay, pentane extracts of leaves or squares of a Multiple Host-plant Resistance genotype (MHR11), Deltapine commercial (DP90), and Smith Red Leaf (SRL) received significantly more eggs than solvent-treated controls. Extracts of squares of the native genotype Gossypium nelsonii did not receive more eggs. Females preferred DP90 and MHR11 to SRL and G. nelsonii. Female moths also laid more eggs on pentane extracts of MHR11 flowers than MHR11 leaves from preflowering, early flowering and peak-flowering plants. In a flight chamber, female moths used olfactory cues at short range to mediate oviposition and discrimination between host plants. Egg-laying, mated females were attracted at a distance (1.5 m) to volatile compounds released by whole plants and odours emanating from filter papers treated with synthetic volatile terpenes. Individually, the terpenes did not stimulate any significant oviposition response. However, there was a significant oviposition response to a mixture of equal volumes of the terpenes (trans-beta-caryophyllene, alpha-pinene, beta-pinene, myrcene, beta-bisabolol, and alpha-humulene). Conversely, antennectomised (moths with transected antennae), egg-laying, mated females did not stimulate any significant oviposition response. The significance of these findings in relation to H. armigera hostplant selection are discussed.
Resumo:
Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Abstract Development data of eggs and pupae of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka, at constant temperatures were used to evaluate a linear and seven nonlinear models for insect development. Model evaluation was based on fit to data (residual sum of squares and coefficient of determination or coefficient of nonlinear regression), number of measurable parameters, the biological value of the fitted coefficients and accuracy in the estimation of thresholds. Of the nonlinear models, the Lactin model fitted experimental data well and along with the linear model, can be used to describe the temperature-dependent development of this species.
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.
Resumo:
In this paper I give details of new constructions for critical sets in latin squares. These latin squares, of order n, are such that they can be partitioned into four subsquares each of which is based on the addition table of the integers module n/2, an isotopism of this or a conjugate.
Resumo:
To date very Few families of critical sets for latin squares are known. The only previously known method for constructing critical sets involves taking a critical set which is known to satisfy certain strong initial conditions and using a doubling construction. This construction can be applied to the known critical sets in back circulant latin squares of even order. However, the doubling construction cannot be applied to critical sets in back circulant latin squares of odd order. In this paper a family of critical sets is identified for latin squares which are the product of the latin square of order 2 with a back circulant latin square of odd order. The proof that each element of the critical set is an essential part of the reconstruction process relies on the proof of the existence of a large number of latin interchanges.
Resumo:
A critical set in a latin square of order n is a set of entries in a latin square which can be embedded in precisely one latin square of order n. Also, if any element of the critical set is deleted, the remaining set can be embedded in more than one latin square of order n. In this paper we find smallest weak and smallest totally weak critical sets for all the latin squares of orders six and seven. Moreover, we computationally prove that there is no (totally) weak critical set in the back circulant latin square of order five and we find a totally weak critical set of size seven in the other main class of latin squares of order five.
Resumo:
In this note we show by counter-example that the direct product of two weak uniquely completable partial latin squares is not necessarily a uniquely completable partial latin square. This counter-example rejects a conjecture by Gower (see [3]) on the direct product of two uniquely completable partial latin squares.
Resumo:
A critical set in a Latin square of order n is a set of entries from the square which can be embedded in precisely one Latin square of order n, Such that if any element of the critical set. is deleted, the remaining set can be embedded, in more than one Latin square of order n.. In this paper we find all the critical sets of different sizes in the Latin squares of order at most six. We count the number of main and isotopy classes of these critical sets and classify critical sets from the main classes into various strengths. Some observations are made about the relationship between the numbers of classes, particularly in the 6 x 6 case. Finally some examples are given of each type of critical set.
Resumo:
We find necessary and sufficient conditions for completing an arbitrary 2 by n latin rectangle to an n by n symmetric latin square, for completing an arbitrary 2 by n latin rectangle to an n by n unipotent symmetric latin square, and for completing an arbitrary 1 by n latin rectangle to an n by n idempotent symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of an (n - 1)-edge colouring of K-n (n even), and for an n-edge colouring of K-n (n odd) in which the colours assigned to the edges incident with two vertices are specified in advance.
Resumo:
In this paper we focus on the existence of 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2(n). It has been shown by Stinson and van Rees that this latin square contains a 2-critical set of volume 4(n) - 3(n). We provide constructions for 2-critical sets containing 4(n) - 3(n) + 1 - (2(k-1) + 2(m-1) + 2(n-(k+m+1))) entries, where 1 less than or equal to k less than or equal to n and 1 less than or equal to m less than or equal to n - k. That is, we construct 2-critical sets for certain values less than 4(n) - 3(n) + 1 - 3 (.) 2([n /3]-1). The results raise the interesting question of whether, for the given latin square, it is possible to construct 2-critical sets of volume m, where 4(n) - 3(n) + 1 - 3 (.) 2([n/3]-1) < m < 4(n) - 3(n).
Resumo:
Previously the process of finding critical sets in Latin squares has been inside cumbersome by the complexity and number of Latin trades that, must be constructed. In this paper we develop a theory of Latin trades that yields more transparent constructions. We use these Latin trades to find a new class of critical sets for Latin squares which are a product of the Latin square of order 2 with a. back circulant Latin square of odd order.