106 resultados para sugarcane juice
em University of Queensland eSpace - Australia
Resumo:
A sensitive, specific polymerase chain reaction-based assay was developed for the detection of the causal agent of ratoon stunting disease of sugarcane, Clavibacter xyli subsp. xyli. This assay uses oligonucleotide primers derived from the internal transcribed spacer region between the 16S and 23S rRNA genes of the bacterial rRNA operon. The assay is specific for C. xyli subsp. xyli and does not produce an amplification product from the template of the closely related bacterium C. xyli subsp. cynodontis, nor from other bacterial species. The assay was successfully applied to the detection of C. xyli subsp. xyli in fibrovascular fluid extracted from sugarcane and was sensitive to approximately 22 cells per PCR assay. A multiplex PCR test was also developed which identified and differentiated C. xyli subsp. xyli and C. xyli subsp. cynodontis in a single PCR assay.
Resumo:
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the beta-glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.
Resumo:
Myriogenospora atramentosa has been found on lemongrass (Cymbopogon citratus) and sugarcane (Saccharum interspecific hybrids) in Queensland. These are the first records of this fungus outside of the Americas.
Resumo:
This Letter evaluates several narrow-band indices from EO-1 Hyperion imagery in discriminating sugarcane areas affected by 'orange rust' ( Puccinia kuehnii ) disease. Forty spectral vegetation indices (SVIs), focusing on bands related to leaf pigments, leaf internal structure, and leaf water content, were generated from an image acquired over Mackay, Queensland, Australia. Discriminant function analysis was used to select an optimum set of indices based on their correlations with the discriminant function. The predictive ability of each index was also assessed based on the accuracy of classification. Results demonstrated that Hyperion imagery can be used to detect orange rust disease in sugarcane crops. While some indices that only used visible near-infrared (VNIR) bands (e.g. SIPI and R800/R680) offer separability, the combination of VNIR bands with the moisture-sensitive band (1660 nm) yielded increased separability of rust-affected areas. The newly formulated 'Disease-Water Stress Indices' (DWSI-1=R800/R1660; DSWI-2=R1660/R550; DWSI-5=(R800+R550)/(R1660+R680)) produced the largest correlations, indicating their superior ability to discriminate sugarcane areas affected by orange rust disease.
Resumo:
Several published studies claim that high rates of N-2 fixation occur in sugarcane and sorghum, and have ascribed this result to infection by the bacterium Gluconacetobacter diazotrophicus, abetted by arbuscular mycorrhizal infection ( Glomus clarum). These results have not been confirmed within Australia. In this study, G. diazotrophicus was detected in stalks of field-grown sugarcane in Australia ( based on phenotypic tests, and a PCR test using species-specific primers developed to amplify a fragment of the G. diazotrophicus 16S rRNA gene). Isolates were nitrogenase positive ( acetylene reduction assay) in vitro. However, in glasshouse trials involving inoculation of sugarcane setts with G. diazotrophicus, co-inoculation with mycorrhizae, and plant growth under low N status, recovery of bacteria from maturing plants was variable. At 165 days from planting, no appreciable N-2-fixation, as assessed by dry weight increment, N budget, or N-15 ratio, of either an Australian or a Brazilian cultivar of sugarcane, or a sorghum cultivar, was achieved. We conclude that a N-2-fixing sugarcane - G. diazotrophicus association is not easily achievable, being primarily limited by a lack of infection.
Resumo:
An efficient system is now in place for improving diverse sugarcane cultivars by genetic transformation, that is, the insertion of useful new genes into single cells followed by the regeneration of genetically modified (transgenic) plants. The method has already been used to introduce genes for resistance to several major diseases, insect pests and a herbicide, Field testing has begun, and research is underway to identify other genes for increased environmental stress resistance, agronomic efficiency and yield of sucrose or other valuable products. Experience in other crops has shown that genetically improved varieties which provide genuine environmental and consumer benefits are welcomed by producers and consumers. Substantial research is still needed, but these new gene technologies will reshape the sugar industry and determine the international competitive efficiency of producers.
Resumo:
Albicidin phytotoxins are pathogenicity factors in a devastating disease of sugarcane known as leaf scald, caused by Xanthomonas albilineans. A gene (albD) from Pantoea dispersa has been cloned and sequenced and been shown to code for a peptide of 235 amino acids that detoxifies albicidin, The gene shows no significant homology at the DNA or protein level to any known sequence, but the gene product contains a GxSxG motif that is conserved in serine hydrolases, The AlbD protein, purified to homogeneity by means of a glutathione S-transferase gene fusion system, showed strong esterase activity on p-nitrophenyl butyrate and released hydrophilic products during detoxification of albicidins. AlbD hydrolysis of p-nitrophenyl butyrate and detoxification of albicidins required no complex cofactors, Both processes were strongly inhibited by phenylmethylsulfonyl fluoride, a serine enzyme inhibitor, These data strongly suggest that AlbD is an albicidin hydrolase, The enzyme detoxifies albicidins efficiently over a pH range from 5.8 to 8.0, with a broad temperature optimum from 15 to 35 degrees C, Expression of albD in transformed X. albilineans strains abolished the capacity to release albicidin toxins and to incite disease symptoms in sugarcane, The gene is a promising candidate for transfer into sugarcane to confer a form of disease resistance.
Resumo:
Historically, few articles have addressed the use of district level mill production data for analysing the effect of varietal change on sugarcane productivity trends. This appears to be due to lack of compiled district data sets and appropriate methods by which to analyse these data. Recently, varietal data on tonnes of sugarcane per hectare (TCH), sugar content (CCS), and their product, tonnes of sugar content per hectare (TSH) on a district basis, have been compiled. This study was conducted to develop a methodology for regular analysis of such data from mill districts to assess productivity trends over time, accounting for variety and variety x environment interaction effects for 3 mill districts (Mulgrave, Babinda, and Tully) from 1958 to 1995. Restricted maximum likelihood methodology was used to analyse the district level data and best linear unbiased predictors for random effects, and best linear unbiased estimates for fixed effects were computed in a mixed model analysis. In the combined analysis over districts, Q124 was the top ranking variety for TCH, and Q120 was top ranking for both CCS and TSH. Overall production for TCH increased over the 38-year period investigated. Some of this increase can be attributed to varietal improvement, although the predictors for TCH have shown little progress since the introduction of Q99 in 1976. Although smaller gains have been made in varietal improvement for CCS, overall production for CCS decreased over the 38 years due to non-varietal factors. Varietal improvement in TSH appears to have peaked in the mid-1980s. Overall production for TSH remained stable over time due to the varietal increase in TCH and the non-varietal decrease in CCS.
Resumo:
The presence of vesicular-arbuscular mycorrhizal (VAM) fungi in long-term cane-growing fields associated with yield decline led to the supposition that VAM fungi may be responsible for the poor yields. A glasshouse trial was established to test the effectiveness of a species of VAM fungi, Glomus clarum, extracted from one of these North Queensland fields on the growth of sugarcane (Saccharum interspecific hybrid), maize (Zea mays), and soybean (Glycine max) for 6 phosphorus (P) rates (0, 2.7, 8.2, 25, 74, 222 mg/kg). For maize and soybean plants that received VAM (+ VAM), root colonisation was associated with enhanced P uptake, improved dry weight (DW) production, and higher index tissue-P concentrations than those without VAM (-VAM). By comparing DW responses of maize and soybean for different P rates, savings in fertiliser P of up to 160 and 213 kg/ha, respectively, were realised. Sugarcane plants were generally less responsive. Apart from a 30% DW increase with VAM when 2.7 mg P/kg was added, DW of +VAM plants was equivalent to, or worse than in the case of 222 mg P/kg, DW of -VAM plants. For all 3 host species, colonisation was least at the highest P application, presumably from excessive P within the plant tissue. Critical P concentrations for the 3 host species were below those reported elsewhere, and for soybean and sugarcane, the critical concentration for +VAM plants was lower than that of -VAM plants. There are 3 implications that arise from this study. First, VAM fungi present in cane-growing soils can promote the growth of maize and soybean, which are potential rotation crops, over a range of P levels. Second, the mycorrhizal strain taken from this site did not generally contribute to a yield decline in sugarcane plants. Third, application of P fertiliser is not necessary for sugarcane when acid-extractable P is
Resumo:
The measurement of natural N-15 abundance is a well-established technique for the identification and quantification of biological N-2 fixation in plants. Associative N-2 fixing bacteria have been isolated from sugarcane and reported to contribute potentially significant amounts of N to plant growth and development. It has not been established whether Australian commercial sugarcane receives significant input from biological N-2 fixation, even though high populations of N-2 fixing bacteria have been isolated from Australian commercial sugarcane fields and plants. In this study, delta(15)N measurements were used as a primary measure to identify whether Australian commercial sugarcane was obtaining significant inputs of N via biological N-2 fixation. Quantification of N input, via biological N-2 fixation, was not possible since suitable non-N-2 fixing reference plants were not present in commercial cane fields. The survey of Australian commercially grown sugarcane crops showed the majority had positive leaf delta(15)N values (73% >3.00parts per thousand, 63% of which were
Resumo:
Most sugarcane breeding programs in Australia use large unreplicated trials to evaluate clones in the early stages of selection. Commercial varieties that are replicated provide a method of local control of soil fertility. Although such methods may be useful in detecting broad trends in the field, variation often occurs on a much smaller scale. Methods such as spatial analysis adjust a plot for variability by using information from immediate neighbours. These techniques are routinely used to analyse cereal data in Australia and have resulted in increased accuracy and precision in the estimates of variety effects. In this paper, spatial analyses in which the variability is decomposed into local, natural, and extraneous components are applied to early selection trials in sugarcane. Interplot competition in cane yield and trend in sugar content were substantial in many of the trials and there were often large differences in the selections between the spatial and current method used by the Bureau of Sugar Experiment Stations. A joint modelling approach for tonnes sugar per hectare in response to fertility trends and interplot competition is recommended.
Resumo:
Conditions have been developed for genetic transformation and insertional mutagenesis in Leifsonia xyli subsp. xyli (Lxx), the causal organism of ratoon stunting disease (RSD), one of the most damaging and intractable diseases of sugarcane internationally. Transformation frequencies ranged from 1 to 10 colony forming units (CFU)/mug of plasmid DNA using Clavibacter/Escherichia coli shuttle vectors pCG188, pDM302, and pDM306 and ranged from 50 to 500 CFU/mug using cosmid cloning vectors pLAFR3 and pLAFR5-km. The transformation/transposition frequency was 0 to 70 CFU/mug of DNA, using suicide vectors pUCD623 and pSLTP2021 containing transposable elements Tn4431 and Tn5, respectively. It was necessary to grow Lxx in media containing 0.1% glycine for electroporation and to amplify large plasmids in a dam(-)/dcm(-) E. coli strain and purify the DNA by anion exchange. To keep selection pressure at an optimum, the transformants were grown on nitrocellulose filters (0.2-mum pore size) on media containing the appropriate antibiotics. Transposon Tn4431 containing a promoterless lux operon from Vibrio fischeri and a tetracycline-resistance gene was introduced on the suicide vector pUCD623. All but 1% of the putative transposon mutants produce light, indicating transposition into functional Lxx genes. Southern blot analysis of these transformants indicates predominantly single transposon insertions at unique sites. The cosmid cloning vector pLAFR5-km was stably maintained in Lxx. The development of a transformation and transposon mutagenesis system opens the way for molecular analysis of pathogenicity determinants in Lxx.