3 resultados para sudden cardiac arrest

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sudden cardiac death in small animals is uncommon but often occurs due to cardiac conduction defects or myocardial diseases. Primary cardiac conduction defects are mainly caused by mutations in genes involved in impulse conduction processes (e.g., gapjunction genes and transcription factors) or repolarisation processes (e.g., ion-channel genes), whereas primary cardiomyopathies are mainly caused by defective force generation or force transmission due to gene mutations in either sarcomeric or cytoskeleton proteins. Although over 50 genes have been identified in humans directly or indirectly related to sudden cardiac death, no genetic aetiologies have been identified in small animals. Sudden cardiac deaths have been also reported in German Shepherds and Boxers. A better understanding of molecular genetic aetiologies for sudden cardiac death will be required for future study toward unveiling actiology in sudden cardiac death in small animals. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper was to summarise the reported excess in coronary events on Mondays, and examine the evidence for three competing explanations: stress, alcohol consumption, or registration errors. A review of the literature found 28 studies covering 16 countries and over 1.6 million coronary events. The overall Monday excess was small; in a population experiencing 100 coronary events per week there was one more event on Monday than other days. The excess was larger in men and in studies including sudden cardiac death or cardiac arrests. In a prospective study an increase in events on Mondays was associated with greater alcohol consumption, lower rainfall, and the month of January. The excess in coronary events on Mondays is a persistent phenomenon. The size of the effect varies widely between populations. There is some evidence of an association with alcohol consumption, but a definitive explanation remains elusive and is likely to remain so because of the smallness of the effect and the paucity of high quality data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brugada syndrome (BS) is a genetic disease identified by an abnormal electrocardiogram ( ECG) ( mainly abnormal ECGs associated with right bundle branch block and ST-elevation in right precordial leads). BS can lead to increased risk of sudden cardiac death. Experimental studies on human ventricular myocardium with BS have been limited due to difficulties in obtaining data. Thus, the use of computer simulation is an important alternative. Most previous BS simulations were based on animal heart cell models. However, due to species differences, the use of human heart cell models, especially a model with three-dimensional whole-heart anatomical structure, is needed. In this study, we developed a model of the human ventricular action potential (AP) based on refining the ten Tusscher et al (2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573 - 89) model to incorporate newly available experimental data of some major ionic currents of human ventricular myocytes. These modified channels include the L-type calcium current (ICaL), fast sodium current (I-Na), transient outward potassium current (I-to), rapidly and slowly delayed rectifier potassium currents (I-Kr and I-Ks) and inward rectifier potassium current (I-Ki). Transmural heterogeneity of APs for epicardial, endocardial and mid-myocardial (M) cells was simulated by varying the maximum conductance of IKs and Ito. The modified AP models were then used to simulate the effects of BS on cellular AP and body surface potentials using a three-dimensional dynamic heart - torso model. Our main findings are as follows. (1) BS has little effect on the AP of endocardial or mid-myocardial cells, but has a large impact on the AP of epicardial cells. (2) A likely region of BS with abnormal cell AP is near the right ventricular outflow track, and the resulting ST-segment elevation is located in the median precordium area. These simulation results are consistent with experimental findings reported in the literature. The model can reproduce a variety of electrophysiological behaviors and provides a good basis for understanding the genesis of abnormal ECG under the condition of BS disease.