60 resultados para substituent elucidation
em University of Queensland eSpace - Australia
Resumo:
We have shown that 44 amino acid residues N-terminal segment of kappa-casein exhibits considerable a-helical structure. This prompted us to investigate the structures of the remaining segments of kappa-casein. Thus, in this study the chemical synthesis and structure elucidation of the peptide 45-87 amino acid residues of kappa-casein is reported. The peptide was assembled using solid phase peptide synthesis methodology on pam resin, cleaved via HF, freeze dried and, after purification, characterised by mass spectrometry (observed m/z 4929; calculated mit 4929.83). The amino acid sequence of the peptide is: CKPVALINNQFLPYPYYAKPAAVRSPAQILQWQVLSNTVPAKA Its structure elucidation has been carried out using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. CD spectrum of the peptide shows it to be a random structure in water but in 30% trifluoroethanol the peptide exhibits considerable structure. The 1D and 2D NMR spectra corroborated the results of CD. The structure elucidation of the peptide using TOCSY and NOESY NMR techniques will be discussed.
Resumo:
Malondialdehyde and acetaldehyde react together with proteins and form hybrid protein conjugates designated as MAA adducts, which have been detected in livers of ethanol-fed animals. Our previous studies have shown that MAA adducts are comprised of two distinct products. One adduct is composed of two molecules of malondialdehyde and one molecule of acetaldehyde and was identified as the 4-methpl-1,4-dihydropyridine-3,5-dicarbaldehyde derivative of an amino group (MHHDC adduct). The other adduct is a 1:1 adduct of malondialdehyde and acetaldehyde and was identified as the 2-formyl-3-(alkylamino)butanal derivative of an amino group (FAAB adduct). In this study, information on the mechanism of MAA adduct formation was obtained, focusing on whether the FAAB adduct serves as a precursor for the MDHDC adduct. Upon the basis of chemical analysis and NMR spectroscopy, two initial reaction steps appear to be a prerequisite for MDHDC formation. One step involves the reaction of one molecule of malondialdehyde and one of acetaldehyde with an amino group of a protein to form the FAAB product, while the other step involves the generation of a malondialdehyde-enamine. It appears that generation of the MDHDC adduct requires the FAAB moiety to be transferred to the nitrogen of the MDA-enamine. For efficient reaction of FAAB with the enamine to take place, additional experiments indicated that these two intermediates likely must be in positions on the protein of close proximity to each other. Further studies showed that the incubation of liver proteins from ethanol-fed rats with MDA resulted in a marked generation of MDHDC adducts, indicating the presence of a pool of FAAB adducts in the liver of ethanol-fed animals. Overall, these findings show that MDHDC-protein adduct formation occurs via the reaction of the FAAB moiety with a malondialdehyde-enamine, and further suggest that a similar mechanism may be operative in vivo in the liver during prolonged ethanol consumption.
Resumo:
Chiral resolution of the cobalt cage complexes [Co(diNOsar)](3+) and [Co(diAMsarH(2))](5+) have been achieved by selective crystallization with the anion bis-mu-(R),(R)-tartratodiantimonate(III) ([Sb-2(R,R-tart)(2)](2-)) and also by column chromatography with Na-2[Sb-2(R, R-tart)(2)] as eluent. The X-ray crystal structures of Lambda-[ Co(diNOsar)][Sb-2(R, R-tart)(2)] Cl . 7H(2)O and Delta-[Co(diAMsarH(2))][Sb-2(R, R-tart)(2)](2)Cl . 14H(2)O are reported, which reveal an unexpected reversal of chiral discrimination when the cage substituent is changed from nitro (Lambda-enantiomer) to ammonio (Delta-enantiomer) and shows that the ammonio- substituted cage is capable of forming a three-point hydrogen-bonding interaction with each complex anion, whereas the nitro analogue can only form two hydrogen bonds with each [Sb-2(R, R-tart)(2)](2-) anion. During cation exchange chromatography of the racemic cobalt cage complexes with Na-2[Sb-2(R, R-tart)(2)] as eluent, Lambda-[Co(diNOsar)](3+) elutes first, which implies a tighter ion pairing interaction than for the Delta-enantiomer. On the other hand, Delta-[Co(diAMsarH(2))](5+) elutes first during chromatography under identical conditions, which is also consistent with a preferred outer-sphere complex formed between Delta-[Co(diAMsarH(2))](5+) and [Sb-2(R, R-tart)(2)](2-) relative to Lambda-[Co(diAMsarH(2))](5+) and [Sb-2(R,R-tart)(2)](2-).
Resumo:
In this paper, the relative photopolymerization efficiency for polymerization of a difunctional acrylate initiated by various N-substituted maleimides in the presence of amine and benzophenone are compared on the basis of a photo-differential scanning calorimetry (photo-DSC) study. The trends in the polymerization rates were obtained from the photopolymerization profiles and expressed in terms of a photoinitiation index, I-p. An N-substituent index, I-s, which indicates whether each N-substituent plays either a positive (when I-s > 1) or a negative (when I-s < 1) role in the initiation process relative to MI (unsubstituted maleimide), was determined. (C) 2003 Society of Chemical Industry.
Resumo:
A nematocidal agent present in a southern Australian marine sponge of the genus Echinodictyum has been isolated and identified by detailed spectroscopic analysis and total synthesis as the novel betaine (-)-echinobetaine A (6). Preliminary SAR investigations have been undertaken.
Resumo:
The principle nematocidal agent present in a southern Australian marine sponge of the genus Echinodictyum has been isolated and identfied as the novel betaine (+)-echinobetaine B (6), and the structure assigned by spectroscopic analysis has been confirmed by total synthesis. Preliminary SAR conclusions are drawn from analysis of synthetic intermediates and the known marine metabolites zooanemonin (12) and norzooanemonin (13), and the new sponge metabolite norzooanemonin methyl ester (14). The latter compound is reported for the first time from a selection of Australian sponges, including an Axinyssa sp., a Niphates sp., an Axinella sp. and a Ptilocaulis sp.
Resumo:
The caseins (alpha(s1), alpha(s2), beta, and kappa) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine K-casein, the protein which maintains the micellar structure of the caseins. K-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro(8) to Arg(34). This is the first report which demonstrates extensive secondary structure within the casein class of proteins. (c) 2006 Elsevier Inc. All rights reserved.