4 resultados para subsidence

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve Late Quaternary TIMS U-Th ages are reported here from 10 coral samples collected in situ from five transgressive coral/algal raised reefs (height: max. 113 m, min. 8 m) and two raised lagoonal deposits (height: max. 18 m, min. 8 m) along and near the west coast of Tanna, which lies in the Median Sedimentary Basin of South Vanuatu, southwest Pacific. These reefs and raised lagoonal deposits represent several age groups: (i) 215 ka (marine oxygen-isotope stage 7) penultimate interglacial (highest elevation and oldest); (ii) one lagoonal deposit of ca 127 ka (marine oxygen-isotope stage 5e); (iii) three last interglacial reefs with ages 102, 89 and 81 ka (representing marine oxygen-isotope stages 5c, 5b and 5a, respectively, of the latter part of the last interglacial); (iv) a lagoonal deposit with a 92 ka age (5b); and (v) a Holocene reef (age >5.7-5.0 ka) (lowest elevation and youngest). A ca 4.9 ka regressive reef (at elevation of 1.5 m above sea-level) is consistent with an island-wide 6.5 m uplift (probably largely coseismic), and a probable further island-wide uplift occurred in the late Holocene. The U-series ages taken together with the heights of transgressive reefs show that uplift since 215 ka was, on average, at similar to0.52 mm/y; although since 5 ka the uplift rate was, on average, similar to1.6 mm/y (the assumption being that a 1.5 m above sea-level reef has a coseismic origin). Elevation of transgressive reefs 5a, 5b and 5c and their ages indicates an island-wide subsidence during the period ?124-89 ka (i.e. Late Quaternary uplift/subsidence was jerky). Late Quaternary uplift/subsidence on the northwest coast of Tanna is considered to be due to irregular thicknesses of crust being subducted beneath Tanna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A much-revised Quaternary stratigraphy is presented for ignimbrites and pumice fall deposits of the Bandas del Sur, in southern Tenerife. New Ar-41/Ar-39 data obtained for the Arico, Granadilla, Fasnia, Poris, La Caleta and Abrigo formations are presented, allowing correlation with previously dated offshore marine ashfall layers and volcaniclastic sediments. We also provide a minimum age of 287 +/- 7 ka for a major sector collapse event at the Gaimar valley. The Bandas del Sur succession includes more than seven widespread ignimbrite sheets that have similar characteristics, including widespread basal Plinian layers, predominantly phonolite composition, ignimbrites with similar extensive geographic distributions, thin condensed veneers with abundant diffuse bedding and complex lateral and vertical grading patterns, lateral gradations into localized massive facies within palaeo-wadis, and widespread lithic breccia layers that probably record caldera-forming eruptions. Each ignimbrite sheet records substantial bypassing of pyroclastic material into the ocean. The succession indicates that Las Canadas volcano underwent a series of major explosive eruptions, each starting with a Plinian phase followed by emplacement of ignimbrites and thin ash layers, some of coignimbrite origin. Several of the ignimbrite sheets are compositionally zoned and contain subordinate mafic pumices and banded pumices indicative of magma mingling immediately prior to eruption. Because passage of each pyroclastic density current was characterized by phases of non-deposition and erosion, the entire course of each eruption is incompletely recorded at any one location, accounting for some previously perceived differences between the units. Because each current passed into the ocean, estimating eruption volumes is virtually impossible. Nevertheless, the consistent widespread distributions and the presence of lithic breccias within most of the ignimbrite sheets suggest that at least seven caldera collapse eruptions are recorded in the Bandas del Sur succession and probably formed a complex, nested collapse structure. Detailed field relationships show that extensive ignimbrite sheets (e.g. the Arico, Poris and La Caleta formations) relate to previously unrecognized caldera collapse events. We envisage that the evolution of the nested Las Cahadas caldera is more complex than previously thought and involved a protracted history of successive ignimbrite-related caldera collapse events, and large sector collapse events, interspersed with edifice-building phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large storm-relocated Porites coral blocks are widespread on the reef flats of Nansha area, southern South China Sea. Detailed investigations of coral reef ecology, geomorphology and sedimentation on Yongshu Reef indicate that such storm-relocated blocks originated from large Porites lutea corals growing on the spurs within the reef-front living coral zone. Because the coral reef has experienced sustained subsidence and reef development during the Holocene, dead corals were continuously covered by newly growing coral colonies. For this reason, the coral blocks must have been relocated by storms from the living sites and therefore the ages of these storm-relocated corals should approximate the times when the storms occurred. Rapid emplacement of these blocks is also evidenced by the lack of coral overgrowth, encrustation or subtidal alteration. U-series dating of the storm-relocated blocks as well as of in situ reef flat corals suggests that, during the last 1000 years, at least six strong storms occurred in 1064 +/- 30, 1210 +/- 5-1201 +/- 4, 1336 +/- 9, 1443 +/- 9, 1685 +/- 8-1680 +/- 6, 1872 +/- 15 AD, respectively, with an average 160-year cycle (110-240 years). The last storm, which occurred in 1872 15 AD, also led to mortality of the reef flat corals dated at similar to 130 years ago. Thus, the storm had significant impacts on coral reef ecology and morphology. (C) 2004 Elsevier B.V. All rights reserved.