29 resultados para submersed aquatic vegetation

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determined which factors predict the presence and abundance of Dusky Moorhens (Gallinula tenebrosa) at wetlands by surveying the ecological and habitat characteristics of 62 sites across south-east Queensland. Moorhens were observed in 48 of the sites sampled. They were more likely to be found at sites surrounded by taller terrestrial vegetation and where free-floating and attached aquatic vegetation was more abundant. The number of moorhens found at a site increased in relation to vegetation height, the abundance of attached aquatic vegetation and the number of purple swamphens observed. These results suggest that there are ecological constraints on the distribution of moorhens, and that food abundance and the availability of suitable nesting sites determine the overall distribution and abundance of moorhens in wetlands. Adult moorhens develop brightly coloured fleshy frontal shields, bills and legs when breeding, although in some populations birds maintain year-round colouration. We observed year-round breeding colouration in 23 out of 34 sampling sites that had moorhens and were surveyed in August. Coloured moorhens were found during winter at sites with higher minimum winter temperatures, and more abundant free-floating and submerged leafy vegetation. In addition, higher proportions of moorhens were coloured at sites with higher mean minimum temperatures. The retention of year-round breeding colouration appears to be restricted to areas with warmer winter temperatures and more abundant food. The results suggest that areas not occupied by moorhens are of inadequate quality to support breeding populations. We suggest that ecological constraints on independent breeding in Dusky Moorhens may have favoured the evolution of their unusual cooperative breeding system, which involves frequent mate-sharing by both sexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 1000 marine and terrestrial pollen diagrams and Some hundreds of vertebrate faunal sequences have been studied in the Austral-Asian region bisected by the PEPII transect, from the Russian arctic extending south through east Asia, Indochina, southern Asia, insular Southeast Asia (Sunda), Melanesia, Australasia (Sahul) and the western south Pacific. The majority of these records are Holocene but sufficient data exist to allow the reconstruction of the changing biomes over at least the past 200,000 years. The PEPII transect is free of the effects of large northern ice caps yet exhibits vegetational change in glacial cycles of a similar scale to North America. Major processes that can be discerned are the response of tropical forests in both lowlands and uplands to glacial cycles, the expansion of humid vegetation at the Pleistocene-Holocene transition and the change in faunal and vegetational controls as humans occupy the region. There is evidence for major changes in the intensity of monsoon and El Nino-Southern oscillation variability both on glacial-interglacial and longer time scales with much of the region experiencing a long-term trend towards more variable and/or drier climatic conditions. Temperature variation is most marked in high latitudes and high altitudes with precipitation providing the major climate control in lower latitude, lowland areas. At least some boundary shifts may be the response of vegetation to changing CO2 levels in the atmosphere. Numerous questions of detail remain, however, and current resolution is too coarse to examine the degree of synchroneity of millennial scale change along the transect. (C) 2003 Elsevier Ltd and INQUA. All rights reserved.