15 resultados para subcritical assemblies
em University of Queensland eSpace - Australia
Resumo:
Diffusions of free and adsorbed molecules of subcritical hydrocarbons in activated carbon were investigated to study the influence of adsorbed molecules on both diffusion processes at low pressures. A collision reflection factor, defined as the fraction of molecules undergoing collision to the solid surface over reflection from the surface, is incorporated into Knudsen diffusivity and surface diffusivity in meso/macropores. Since the porous structure of activated carbon is bimodal in nature, the diffusion of adsorbed molecules is contributed by that of weakly adsorbed molecules on the meso/macropore surfaces and that of strongly adsorbed molecules in the small confinement of micropores. The mobility of adsorbed molecules on the meso/macropore surface is characterized by the surface diffusivity D-mu 2, while that in the micropore is characterized by D-mu 1. In our study with subcritical hydrocarbons, we have found that the former increases almost linearly with pressure, while the latter exhibits a sharp increase at a very low-pressure region and then decreases beyond a critical pressure. This critical pressure is identified as a pressure at which the micropores are saturated.
Resumo:
A new diffusion and flow model is presented to describe the behavior of hydrocarbon vapors in activated carbon. The micro/mesopore size distribution (PSD) is obtained according to Do's method which consists of two sequential processes of pore layering and pore filling. This model uses the micro/meso PSD obtained from each adsorbate equilibrium isotherm, which reflects the dynamics behavior of adsorbing molecules through the solid. The initial rise in total permeability is mainly attributed to adsorbed-phase diffusion (that is, surface diffusion), whereas the decrease over reduced pressure of about 0.9 is attributed to the reduction of pore space available for gas phase diffusion and flow. A functional form of surface diffusivity is proposed and validated with experimental data. This model predicts well the permeability of condensable hydrocarbon vapors in activated carbon. (C) 2005 American Institute of Chemical Engineers.
Resumo:
The dynamics of fibre slippage within general non-bonded fibrous assemblies is studied in the situation where the assembly is subjected to general small cyclic loads. Two models are proposed. The first is applicable when the general cyclic loading is complemented by an occasional tugging force on one end of a fibre, which causes it to gradually withdraw from the assembly, such as might occur during the pilling of a textile. The second considers the situation in which the cyclic perturbations act around a constant background load applied to the assembly. The dynamics is reminiscent of self-organized critical behaviour. This model is applied to predict the progressive elongation of a single yarn during weaving.
Resumo:
Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.
Resumo:
Background: The results from previous studies have indicated that a pre-attentive component of the event-related potential (ERP), the mismatch negativity (MMN), may be an objective measure of the automatic auditory processing of phonemes and words. Aims: This article reviews the relationship between the MMN data and psycholinguistic models of spoken word processing, in order to determine whether the MMN may be used to objectively pinpoint spoken word processing deficits in individuals with aphasia. Main Contribution: This article outlines the ways in which the MMN data support psycholinguistic models currently used in the clinical management of aphasic individuals. Furthermore, the cell assembly model of the neurophysiological mechanisms underlying spoken word processing is discussed in relation to the MMN and psycholinguistic models. Conclusions: The MMN data support current theoretical psycholinguistic and neurophysiological models of spoken word processing. Future MMN studies that include normal and aphasic populations will further elucidate the role that the MMN may play in the clinical management of aphasic individuals.
Resumo:
In this paper, we evaluate the performance of the 1- and 5-site models of methane on the description of adsorption on graphite surfaces and in graphitic slit pores. These models have been known to perform well in the description of the fluid-phase behavior and vapor-liquid equilibria. Their performance in adsorption is evaluated in this work for nonporous graphitized thermal carbon black, and simulation results are compared with the experimental data of Avgul and Kiselev (Chemistry and Physics of Carbon; Dekker: New York, 1970; Vol. 6, p 1). On this nonporous surface, it is found that these models perform as well on isotherms at various temperatures as they do on the experimental isosteric heat for adsorption on a graphite surface. They are then tested for their performance in predicting the adsorption isotherms in graphitic slit pores, in which we would like to explore the effect of confinement on the molecule packing. Pore widths of 10 and 20 angstrom are chosen in this investigation, and we also study the effects of temperature by choosing 90.7, 113, and 273 K. The first two are for subcritical conditions, with 90.7 K being the triple point of methane and 113 K being its boiling point. The last temperature is chosen to represent the supercritical condition so that we can investigate the performance of these models at extremely high pressures. We have found that for the case of slit pores investigated in this paper, although the two models yield comparable pore densities (provided the accessible pore width is used in the calculation of pore density), the number of particles predicted by the I-site model is always greater than that predicted by the 5-site model, regardless of whether temperature is subcritical or supercritical. This is due to the packing effect in the confined space such that a methane molecule modeled as a spherical particle in the I-site model would pack better than the fused five-sphere model in the case of the 5-site model. Because the 5-site model better describes the liquid- and solid-phase behavior, we would argue that the packing density in small pores is better described with a more detailed 5-site model, and care should be exercised when using the 1-site model to study adsorption in small pores.
Resumo:
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules. (c) 2005 American Institute of Physics.
Resumo:
atomic force microscopy (AFM); atom transfer radical polymerization (ATRP); block copolymers; self-assembly; silica nanoparticles.
Resumo:
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.
Resumo:
The hypothesis that lipid rafts exist in plasma membranes and have crucial biological functions remains controversial. The lateral heterogeneity of proteins in the plasma membrane is undisputed, but the contribution of cholesterol-dependent lipid assemblies to this complex, non-random organization promotes vigorous debate. In the light of recent studies with model membranes, computational modelling and innovative cell biology, I propose an updated model of lipid rafts that readily accommodates diverse views on plasma-membrane micro-organization.
Resumo:
As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (B-T) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.