4 resultados para sub-seasonal prediction
em University of Queensland eSpace - Australia
Resumo:
Improvements in seasonal climate forecasts have potential economic implications for international agriculture. A stochastic, dynamic simulation model of the international wheat economy is developed to estimate the potential effects of seasonal climate forecasts for various countries' wheat production, exports and world trade. Previous studies have generally ignored the stochastic and dynamic aspects of the effects associated with the use of climate forecasts. This study shows the importance of these aspects. In particular with free trade, the use of seasonal forecasts results in increased producer surplus across all exporting countries. In fact, producers appear to capture a large share of the economic surplus created by using the forecasts. Further, the stochastic dimensions suggest that while the expected long-run benefits of seasonal forecasts are positive, considerable year-to-year variation in the distribution of benefits between producers and consumers should be expected. The possibility exists for an economic measure to increase or decrease over a 20-year horizon, depending on the particular sequence of years.
Resumo:
The treatment and hydraulic mechanisms in a septic tank-soil absorption system ( SAS) are highly influenced by the clogging layer or biomat zone which develops on bottom and lower sidewall surfaces within the trench. Flow rates through the biomat and sub-biomat zones are governed largely by the biomat hydraulic properties (resistance and hydraulic conductivity) and the unsaturated hydraulic conductivity of the underlying soil. One- and 2-dimensional models were used to investigate the relative importance of sidewall and vertical flow rates and pathways in SAS. Results of 1-dimensional modelling show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) reduce to a 1 order of magnitude variation in long-term flow rates. To increase the reliability of prediction of septic trench hydrology, HYDRUS-2D was used to model 2-dimensional flow. In the permeable soils, under high trench loading, effluent preferentially flowed in the upper region of the trench where no resistant biomat was present (the exfiltration zone). By comparison, flow was more evenly partitioned between the biomat zones and the exfiltration zones of the low permeability soil. An increase in effluent infiltration corresponded with a greater availability of exfiltration zone, rather than a lower resistance of biomat. Results of modelling simulations demonstrated the important role that a permeable A horizon may play in limiting surface surcharge of effluent under high trench hydraulic loading.
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases
Resumo:
This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.