17 resultados para structural health monitoring (SHM)
em University of Queensland eSpace - Australia
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
This paper reports on the development of an artificial neural network (ANN) method to detect laminar defects following the pattern matching approach utilizing dynamic measurement. Although structural health monitoring (SHM) using ANN has attracted much attention in the last decade, the problem of how to select the optimal class of ANN models has not been investigated in great depth. It turns out that the lack of a rigorous ANN design methodology is one of the main reasons for the delay in the successful application of the promising technique in SHM. In this paper, a Bayesian method is applied in the selection of the optimal class of ANN models for a given set of input/target training data. The ANN design method is demonstrated for the case of the detection and characterisation of laminar defects in carbon fibre-reinforced beams using flexural vibration data for beams with and without non-symmetric delamination damage.
Resumo:
Two water quality monitoring strategies designed to sample hydrophobic organic contaminants have been applied and evaluated across an expected concentration gradient in PAHs in the Moreton region. Semipermeable membrane devices (SPMDs) that sequester contaminants via passive diffusion across a membrane were used to evaluate the concentration of PAHs at four and five sites in spring and summer 2001/2002, respectively. In addition, induction of hepatic cytochrome P4501, EROD activity, in yellowfin bream, Acanthopagrus australis, captured in the vicinity of SPMD sampling sites following deployment in summer was used as a biomarker of exposure to PAHs and related chemicals. SPMDs identified a clear and reproducible gradient in PAH contamination with levels increasing from east to west in Moreton Bay and upstream in the Brisbane River. The highest PAH concentrations expressed as B(a)P-toxicity equivalents (TEQs) were found in urban areas, which were also furthest upstream and experienced the least flushing. Cytochrome P4501 induction in A. australis was similar at all sites. The absence of clear trends in EROD activity may be attributable to factors not measured in this study or variable residency time of A. australis in contaminated areas. It is also possible that fish in the Moreton region are displaying enzymatic adaptation, which has been reported previously for fish subjected to chronic exposure to organic contaminants. These potential interferences complicate interpretation of EROD activity from feral biota. It is, therefore, suggested that future monitoring combine the two methods by applying passive sampler extracts to in vitro EROD assays. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Nitrogen loading to aquatic ecosystems from sewage is recognised worldwide as a growing problem. The use of nitrogen stable isotopes as a means of discerning sewage nitrogen in the environment has been used annually by the Ecosystem Health Monitoring Program in Moreton Bay (Australia) since 1997 when the technique was first developed. This (sewage plume mapping) technique, which measures the delta(15)N isotopic signature of the red macroalga Catenella nipae after incubation in situ, has demonstrated a large reduction in the magnitude and spatial extent of sewage nitrogen within Moreton Bay over the past 5 years. This observed reduction coincides with considerable upgrades to the nitrogen removal efficacy at several sewage treatment plants within the region. This paper describes the observed changes and evaluates whether they can be attributed to the treatment upgrades. (c) 2004 Published by Elsevier Ltd.
Resumo:
Background Reliable information on causes of death is a fundamental component of health development strategies, yet globally only about one-third of countries have access to such information. For countries currently without adequate mortality reporting systems there are useful models other than resource-intensive population-wide medical certification. Sample-based mortality surveillance is one such approach. This paper provides methods for addressing appropriate sample size considerations in relation to mortality surveillance, with particular reference to situations in which prior information on mortality is lacking. Methods The feasibility of model-based approaches for predicting the expected mortality structure and cause composition is demonstrated for populations in which only limited empirical data is available. An algorithm approach is then provided to derive the minimum person-years of observation needed to generate robust estimates for the rarest cause of interest in three hypothetical populations, each representing different levels of health development. Results Modelled life expectancies at birth and cause of death structures were within expected ranges based on published estimates for countries at comparable levels of health development. Total person-years of observation required in each population could be more than halved by limiting the set of age, sex, and cause groups regarded as 'of interest'. Discussion The methods proposed are consistent with the philosophy of establishing priorities across broad clusters of causes for which the public health response implications are similar. The examples provided illustrate the options available when considering the design of mortality surveillance for population health monitoring purposes.
Resumo:
During the past decade the use of stable isotopes to investigate transport pathways of nutrients in aquatic ecosystems has contributed new understanding and knowledge to many aspects of ecology; from the trophic structure of food webs to the spatial extent of nutrient discharges. At the same time aquatic monitoring programs around the world have become more interested in quantifying ecosystem health rather than simply measuring the physical and chemical properties of water (nutrients, pH, temperature and turbidity). A novel technique was initiated in 1998 as part of the development of the Ecosystem Health Monitoring Program in S.E. Queensland Australia (EHMP) using changes in the 15N value of the red macroalgae Catenella nipae, to indicate regions impacted by sewage nitrogen. Sewage plume mapping, using the 15N of C. nipae, has demonstrated that over the past 5 years there has been a large reduction in the magnitude and spatial extent of 15N enrichment at sites close to sewage treatment plants (STPs) discharging into Moreton Bay. This presentation will discuss how the 15N signatures of the C. nipae in the plume at the mouth of the Brisbane River have declined since it was first sampled in 1998 and will evaluate causes that may be responsible for these variations. A series of laboratory experiments were conducted to investigate how environmental conditions influence the 15N signature of C, nipae over the incubation period. These data will be used to discuss the observed in situ decline in 15N in an attempt to determine if the reduction can be attributed solely to improvements in the wastewater discharge.
Resumo:
We drew on Foucault's notion of 'practices of the self' to examine how young people take up, negotiate, and resist the imperatives of a public health discourse concerned with the relationships between health, fitness, and the body. We did this through a discussion of the ways young women and men talk about their own and others' bodies, in the context of a number of in-depth interviews conducted for the Life Activity Project, a study of the place and meaning of physical activity in young people's lives, funded by an Australian Research Council Grant. We found that the young women and men in the study engaged the health/fitness discourse very differently: for the young men, health conflated with fitness as an embodied capacity to do physical work; and for the young women, health was a much more difficult and complex project associated with managing and monitoring practices associated with eating and exercise to maintain an 'appropriate' body shape.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.